Previous |  Up |  Next


Title: An iterative algorithm for testing solvability of max-min interval systems (English)
Author: Myšková, Helena
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 5
Year: 2012
Pages: 879-889
Summary lang: English
Category: math
Summary: This paper is dealing with solvability of interval systems of linear equations in max-min algebra. Max-min algebra is the algebraic structure in which classical addition and multiplication are replaced by $\oplus$ and $\otimes$, where $a\oplus b=\max\{a,b\}, a\otimes b=\min\{a, b\}$. The notation ${\mathbb A}\otimes x={\mathbb b}$ represents an interval system of linear equations, where ${\mathbb A}=[\underline{A},\overline{A}]$ and ${\mathbb b}=[\underline{b},\overline{b}]$ are given interval matrix and interval vector, respectively. We can define several types of solvability of interval systems. In this paper, we define the T4 and T5 solvability and give necessary and sufficient conditions for them. (English)
Keyword: max-min algebra
Keyword: interval system
Keyword: T4-vector
Keyword: T4 solvability
Keyword: T5-vector
Keyword: T5 solvability
MSC: 15A06
MSC: 65G30
idMR: MR3086857
Date available: 2012-12-17T13:29:09Z
Last updated: 2013-09-24
Stable URL:
Reference: [1] Asse, A., Mangin, P., Witlaeys, D.: Assisted diagnosis using fuzzy information..In: NAFIPS 2 Congress, Schenectudy, NY 1983.
Reference: [2] Cechlárová, K.: Solutions of interval systems in max-plus algebra..In: Proc. SOR 2001 (V. Rupnik, L. Zadnik-Stirn, S. Drobne, eds.), Preddvor, Slovenia, pp. 321-326. MR 1861219
Reference: [3] Cechlárová, K., Cuninghame-Green, R. A.: Interval systems of max-separable linear equations..Linear Algebra Appl. 340 (2002), 1-3, 215-224. Zbl 1004.15009, MR 1869429, 10.1016/S0024-3795(01)00405-0
Reference: [4] Cuninghame-Green, R. A.: Minimax Algebra..Lecture Notes in Econom. and Math. Systems 1966, Springer, Berlin 1979. Zbl 0739.90073, MR 0580321
Reference: [5] Gavalec, M., Plavka, J.: Monotone interval eigenproblem in max-min algebra..Kybernetika 46 (2010), 3, 387-396. Zbl 1202.15013, MR 2676076
Reference: [6] Kreinovich, J., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity of Feasibility of Data Processing and Interval Computations..Kluwer, Dordrecht 1998.
Reference: [7] Myšková, H.: Interval systems of max-separable linear equations..Linear Algebra Appl. 403 (2005), 263-272. Zbl 1129.15003, MR 2140286
Reference: [8] Myšková, H.: Control solvability of interval systems of max-separable linear equations..Linear Algebra Appl. 416 (2006), 215-223. Zbl 1129.15003, MR 2242726
Reference: [9] Myšková, H.: Solvability of interval systems in fuzzy algebra..In: Proc. 15th International Scientific Conference on Mathematical Methods in Economics and Industry, Herĺany 2007, pp. 153-157.
Reference: [10] Nola, A. Di, Salvatore, S., Pedrycz, W., Sanchez, E.: Fuzzy Relation Equations and Their Applications to Knowledge Engineering..Kluwer Academic Publishers, Dordrecht 1989. MR 1120025
Reference: [11] Plavka, J.: On the $O(n^3)$ algorithm for checking the strong robustness of interval fuzzy matrices..Discrete Appl. Math. 160 (2012), 640-647. MR 2876347, 10.1016/j.dam.2011.11.010
Reference: [12] Rohn, J.: Systems of Interval Linear Equations and Inequalities (Rectangular Case)..Technical Peport No. 875, Institute of Computer Science, Academy of Sciences of the Czech Republic 2002.
Reference: [13] Rohn, J.: Complexity of some linear problems with interval data..Reliable Comput. 3 (1997), 315-323. Zbl 0888.65052, MR 1616269, 10.1023/A:1009987227018
Reference: [14] Sanchez, E.: Medical diagnosis and composite relations..In: Advances in Fuzzy Set Theory and Applications (M. M. Gupta, R. K. Ragade, and R. R. Yager, eds.), North-Holland, Amsterdam - New York 1979, pp. 437-444. MR 0558737
Reference: [15] Terano, T., Tsukamoto, Y.: Failure diagnosis by using fuzzy logic..In: Proc. IEEE Conference on Decision Control, New Orleans, LA 1977, pp. 1390-1395.
Reference: [16] Zadeh, L. A.: Toward a theory of fuzzy systems..In: Aspects of Network and Systems Theory (R. E. Kalman and N. De Claris, eds.), Hold, Rinehart and Winston, New York 1971, pp. 209-245.
Reference: [17] Zimmermann, K.: Extremální algebra..Ekonomicko-matematická laboratoř Ekonomického ústavu ČSAV, Praha 1976.


Files Size Format View
Kybernetika_48-2012-5_4.pdf 305.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo