Title:
|
Tree algebras: An algebraic axiomatization of intertwining vertex operators (English) |
Author:
|
Kriz, Igor |
Author:
|
Xiu, Yang |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
48 |
Issue:
|
5 |
Year:
|
2012 |
Pages:
|
353-370 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We describe a completely algebraic axiom system for intertwining operators of vertex algebra modules, using algebraic flat connections, thus formulating the concept of a tree algebra. Using the Riemann-Hilbert correspondence, we further prove that a vertex tensor category in the sense of Huang and Lepowsky gives rise to a tree algebra over $\mathbb{C}$. We also show that the chiral WZW model of a simply connected simple compact Lie group gives rise to a tree algebra over $\mathbb{Q}$. (English) |
Keyword:
|
vertex algebra |
Keyword:
|
Riemann-Hilbert correspondence |
Keyword:
|
D-module |
Keyword:
|
KZ-equations |
Keyword:
|
WZW-model |
MSC:
|
17B69 |
MSC:
|
35Q15 |
MSC:
|
81T40 |
idMR:
|
MR3007618 |
DOI:
|
10.5817/AM2012-5-353 |
. |
Date available:
|
2012-12-17T14:01:18Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143111 |
. |
Reference:
|
[1] Beilinson, A., Drinfeld, V.: Chiral algebras.Amer. Math. Soc. Colloq. Publ. 51 (2004). Zbl 1138.17300, MR 2058353 |
Reference:
|
[2] Borcherds, R. E.: Monstrous moonshine and monstrous Lie superalgebras.Invent. Math. 109 (1992), 405–444. Zbl 0799.17014, MR 1172696, 10.1007/BF01232032 |
Reference:
|
[3] Borel, A. (ed.), : Algebraic D–modules.Perspective in Math., vol. 2, Academic Press, 1987. Zbl 0642.32001, MR 0882000 |
Reference:
|
[4] Deligne, P.: Équations différentielles à points singuliers réguliers (French).Lecture Notes in Math., vol. 163, Springer Verlag, 1970. MR 0417174 |
Reference:
|
[5] Frenkel, I., Lepowsky, I., Meurman, A.: Vertex operator algebras and the Monster.Academic Press, Boston, MA, 1988. Zbl 0674.17001, MR 0996026 |
Reference:
|
[6] Grauert, H.: Analytische Faserungen über holomorph–vollständigen Räumen.Math. Ann. 135 (1958), 263–273. Zbl 0081.07401, MR 0098199, 10.1007/BF01351803 |
Reference:
|
[7] Griffin, P. A., Hernandez, O. F.: Structure of irreducible $SU(2)$ parafermion modules derived vie the Feigin–Fuchs construction.Internat. J. Modern Phys. A 7 (1992), 1233–1265. MR 1146819, 10.1142/S0217751X92000533 |
Reference:
|
[8] Grothendieck, A.: Esquisse d’un programme.Geometric Galois Actions (L.Schneps, Lochak, P., eds.), London Math. Soc. Lecture Notes 242, Cambridge University Press, 1997. Zbl 0901.14001, MR 1483107 |
Reference:
|
[9] Hortsch, R., Kriz, I., Pultr, A.: A universal approach to vertex algebras.J. Algebra 324 (7) (2010), 1731–1753. MR 2673758, 10.1016/j.jalgebra.2010.05.012 |
Reference:
|
[10] Hu, P., Kriz, I.: On modular functors and the ideal Teichmüller tower.Pure Appl. Math. Q. 1 1 (3), part 2 (2005), 665–682. Zbl 1149.55015, MR 2201329, 10.4310/PAMQ.2005.v1.n3.a7 |
Reference:
|
[11] Huang, Y. Z.: Two-dimensional conformal geometry and vertex operator algebras.Prog. Math. 148, Birkhäuser, Boston, 1997. Zbl 0884.17021, MR 1448404 |
Reference:
|
[12] Huang, Y. Z.: Generalized rationality and a “Jacobi identity" for intertwining operator algebras.Selecta Math. (N.S.) 6 (3) (2000), 22–267. Zbl 1013.17026, MR 1817614 |
Reference:
|
[13] Huang, Y. Z.: Differential equations, duality and intertwining operators.Comm. Contemp. Math. 7 (2005), 649–706. MR 2175093, 10.1142/S021919970500191X |
Reference:
|
[14] Huang, Y. Z., Lepowsky, J.: Tensor products of modules for a vertex operator algebra and vertex tensor categories.Lie theory and geometry, Prog. Math. 123, Birkhäuser, Boston, 1994, pp. 349–383. Zbl 0848.17031, MR 1327541 |
Reference:
|
[15] Huang, Y. Z., Lepowsky, J.: Intertwining operator algebras and vertex tensor categories for affine Lie algebras.Duke J. Math. 99 (1) (1999), 113–134. Zbl 0953.17016, MR 1700743, 10.1215/S0012-7094-99-09905-2 |
Reference:
|
[16] Huang, Y.Z.: Representations of vertex operator algebras and braided finite tensor categories.Vertex algebras and related areas, Contemp. Math. 497, Amer. Math. Soc., Providence, RI, 2009, pp. 97–111. MR 2568402 |
Reference:
|
[17] Segal, G.: The definition of conformal field theory.Topology, geometry and quantum field theory, London Math. Soc. Lecture Ser. 308, Cambridge Univ. Press, Cambridge, 2004, preprint in the 1980's, pp. 421–577. MR 2079383 |
. |