[1] Bartosiewicz, Z., Kotta, Ü., Pawłuszewicz, E., Wyrwas, M.:
Algebraic formalism of differential one-forms for nonlinear control systems on time scales. Proc. Estonian Acad. Sci. 56 (2007), 264-282.
MR 2353693 |
Zbl 1136.93026
[2] Belikov, J., Kotta, Ü., Tõnso, M.: An explicit formula for computation of the state coordinates for nonlinear i/o equation. In: 18th IFAC World Congress, Milano 2011, pp. 7221-7226.
[4] Choquet-Bruhat, Y., DeWitt-Morette, C., Dillard-Bleick, M.:
Analysis, Manifolds and Physics, Part I: Basics. North-Holland, Amsterdam 1982.
MR 0685274
[6] Conte, G., Moog, C. H., Perdon, A. M.:
Algebraic Mehtods for Nonlinear Control Systems. Springer-Verlag, London 2007.
MR 2305378
[7] Delaleau, E., Respondek, W.:
Lowering the orders of derivatives of controls in generalized state space systems. J. Math. Syst., Estim. Control 5 (1995), 1-27.
MR 1651823 |
Zbl 0852.93016
[9] Halás, M., Kotta, Ü., Li, Z., Wang, H., Yuan, C.:
Submersive rational difference systems and their accessibility. In: International Symposium on Symbolic and Algebraic Computation, Seoul 2009, pp. 175-182.
MR 2742768 |
Zbl 1237.93043
[10] Hauser, J., Sastry, S., Kokotović, P.:
Nonlinear control via approximate input-output linearization: The ball and beam example. IEEE Trans. Automat. Control 37 (1992), 392-398.
DOI 10.1109/9.119645 |
MR 1148727
[11] Kotta, Ü., Kotta, P., Halás, M.:
Reduction and transfer equivalence of nonlinear control systems: Unification and extension via pseudo-linear algebra. Kybernetika 46 (2010), 831-849.
MR 2778925 |
Zbl 1205.93027
[12] Kotta, Ü., Kotta, P., Tõnso, M., Halás, M.: State-space realization of nonlinear input-output equations: Unification and extension via pseudo-linear algebra. In: 9th International Conference on Control and Automation, Santiago, Chile 2011, pp. 354-359.
[13] Kotta, Ü., Tõnso, M.:
Removing or lowering the orders of input shifts in discrete-time generalized state-space systems with Mathematica. Proc. Estonian Acad. Sci. 51 (2002), 238-254.
MR 1951488 |
Zbl 1076.93011
[15] McConnell, J. C., Robson, J. C.:
Noncommutative Noetherian Rings. John Wiley and Sons, New York 1987.
MR 0934572 |
Zbl 0980.16019
[16] Pang, Z. H., Zheng, G., Luo, C.X.: Augmented state estimation and LQR control for a ball and beam system. In: 6th IEEE Conference on Industrial Electronics and Applications, Beijing 2011, pp. 1328-1332.
[18] Schaft, A. J. van der:
On realization of nonlinear systems described by higher-order differential equations. Math. Systems Theory 19 (1987), 239-275.
DOI 10.1007/BF01704916 |
MR 0871787
[20] Tõnso, M., Kotta, Ü.: Realization of continuous-time nonlinear input-output equations: Polynomial approach. Lecture Notes in Control and Inform. Sci., Springer Berlin / Heidelberg 2009, pp. 633-640.
[21] Tõnso, M., Rennik, H., Kotta, Ü.:
WebMathematica-based tools for discrete-time nonlinear control systems. Proc. Estonian Acad. Sci. 58 (2009), 224-240.
MR 2604250 |
Zbl 1179.93079
[23] Zhang, J., Moog, C. H., Xia, X.:
Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra. Kybernetika 46 (2010), 799-830.
MR 2778926 |
Zbl 1205.93030
[24] Institute of Cybernetics at Tallinn University of Technology:
The nonlinear control webpage. Website,
http://nlcontrol.ioc.ee (2012).