Title:
|
State-space realization of nonlinear control systems: unification and extension via pseudo-linear algebra (English) |
Author:
|
Belikov, Juri |
Author:
|
Kotta, Ülle |
Author:
|
Tõnso, Maris |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
48 |
Issue:
|
6 |
Year:
|
2012 |
Pages:
|
1100-1113 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper the tools of pseudo-linear algebra are applied to the realization problem, allowing to unify the study of the continuous- and discrete-time nonlinear control systems under a single algebraic framework. The realization of nonlinear input-output equation, defined in terms of the pseudo-linear operator, in the classical state-space form is addressed by the polynomial approach in which the system is described by two polynomials from the non-commutative ring of skew polynomials. This allows to simplify the existing step-by-step algorithm-based solution. The paper presents explicit formulas to compute the differentials of the state coordinates directly from the polynomial description of the nonlinear system. The method is straight-forward and better suited for implementation in different computer algebra packages such as \textit{Mathematica} or \textit{Maple}. (English) |
Keyword:
|
nonlinear control systems |
Keyword:
|
input-output models |
Keyword:
|
realization |
Keyword:
|
pseudo-linear algebra |
MSC:
|
62A10 |
MSC:
|
93E12 |
idMR:
|
MR3052876 |
. |
Date available:
|
2013-01-10T09:17:23Z |
Last updated:
|
2013-09-24 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143121 |
. |
Reference:
|
[1] Bartosiewicz, Z., Kotta, Ü., Pawłuszewicz, E., Wyrwas, M.: Algebraic formalism of differential one-forms for nonlinear control systems on time scales..Proc. Estonian Acad. Sci. 56 (2007), 264-282. Zbl 1136.93026, MR 2353693 |
Reference:
|
[2] Belikov, J., Kotta, Ü., Tõnso, M.: An explicit formula for computation of the state coordinates for nonlinear i/o equation..In: 18th IFAC World Congress, Milano 2011, pp. 7221-7226. |
Reference:
|
[3] Bronstein, M., Petkovšek, M.: An introduction to pseudo-linear algebra..Theoret. Comput. Sci. 157 (1996), 3-33. Zbl 0868.34004, MR 1383396, 10.1016/0304-3975(95)00173-5 |
Reference:
|
[4] Choquet-Bruhat, Y., DeWitt-Morette, C., Dillard-Bleick, M.: Analysis, Manifolds and Physics, Part I: Basics..North-Holland, Amsterdam 1982. MR 0685274 |
Reference:
|
[5] Cohn, R. M.: Difference Algebra..Wiley-Interscience, New York 1965. Zbl 0127.26402, MR 0205987 |
Reference:
|
[6] Conte, G., Moog, C. H., Perdon, A. M.: Algebraic Mehtods for Nonlinear Control Systems..Springer-Verlag, London 2007. MR 2305378 |
Reference:
|
[7] Delaleau, E., Respondek, W.: Lowering the orders of derivatives of controls in generalized state space systems..J. Math. Syst., Estim. Control 5 (1995), 1-27. Zbl 0852.93016, MR 1651823 |
Reference:
|
[8] Grizzle, J. W.: A linear algebraic framework for the analysis of discrete-time nonlinear systems..SIAM J. Control Optim. 31 (1991), 1026-1044. Zbl 0785.93036, MR 1227545, 10.1137/0331046 |
Reference:
|
[9] Halás, M., Kotta, Ü., Li, Z., Wang, H., Yuan, C.: Submersive rational difference systems and their accessibility..In: International Symposium on Symbolic and Algebraic Computation, Seoul 2009, pp. 175-182. Zbl 1237.93043, MR 2742768 |
Reference:
|
[10] Hauser, J., Sastry, S., Kokotović, P.: Nonlinear control via approximate input-output linearization: The ball and beam example..IEEE Trans. Automat. Control 37 (1992), 392-398. MR 1148727, 10.1109/9.119645 |
Reference:
|
[11] Kotta, Ü., Kotta, P., Halás, M.: Reduction and transfer equivalence of nonlinear control systems: Unification and extension via pseudo-linear algebra..Kybernetika 46 (2010), 831-849. Zbl 1205.93027, MR 2778925 |
Reference:
|
[12] Kotta, Ü., Kotta, P., Tõnso, M., Halás, M.: State-space realization of nonlinear input-output equations: Unification and extension via pseudo-linear algebra..In: 9th International Conference on Control and Automation, Santiago, Chile 2011, pp. 354-359. |
Reference:
|
[13] Kotta, Ü., Tõnso, M.: Removing or lowering the orders of input shifts in discrete-time generalized state-space systems with Mathematica..Proc. Estonian Acad. Sci. 51 (2002), 238-254. Zbl 1076.93011, MR 1951488 |
Reference:
|
[14] Kotta, Ü., Tõnso, M.: Realization of discrete-time nonlinear input-output equations: Polynomial approach..Automatica 48 (2012), 255-262. MR 2889418, 10.1016/j.automatica.2011.07.010 |
Reference:
|
[15] McConnell, J. C., Robson, J. C.: Noncommutative Noetherian Rings..John Wiley and Sons, New York 1987. Zbl 0980.16019, MR 0934572 |
Reference:
|
[16] Pang, Z. H., Zheng, G., Luo, C.X.: Augmented state estimation and LQR control for a ball and beam system..In: 6th IEEE Conference on Industrial Electronics and Applications, Beijing 2011, pp. 1328-1332. |
Reference:
|
[17] Rapisarda, P., Willems, J. C.: State maps for linear systems..SIAM J. Control Optim. 35 (1997), 1053-1091. Zbl 0884.93006, MR 1444349, 10.1137/S0363012994268412 |
Reference:
|
[18] Schaft, A. J. van der: On realization of nonlinear systems described by higher-order differential equations..Math. Systems Theory 19 (1987), 239-275. MR 0871787, 10.1007/BF01704916 |
Reference:
|
[19] Sontag, E. D.: On the observability of polynomial systems, I: Finite-time problems..SIAM J. Control Optim. 17 (1979), 139-151. Zbl 0409.93013, MR 0516861, 10.1137/0317011 |
Reference:
|
[20] Tõnso, M., Kotta, Ü.: Realization of continuous-time nonlinear input-output equations: Polynomial approach..Lecture Notes in Control and Inform. Sci., Springer Berlin / Heidelberg 2009, pp. 633-640. |
Reference:
|
[21] Tõnso, M., Rennik, H., Kotta, Ü.: WebMathematica-based tools for discrete-time nonlinear control systems..Proc. Estonian Acad. Sci. 58 (2009), 224-240. Zbl 1179.93079, MR 2604250 |
Reference:
|
[22] Yuz, J. I., Goodwin, G. C.: On sampled-data models for nonlinear systems..IEEE Trans. Automat. Control 50 (2005), 1477-1489. MR 2171147, 10.1109/TAC.2005.856640 |
Reference:
|
[23] Zhang, J., Moog, C. H., Xia, X.: Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra..Kybernetika 46 (2010), 799-830. Zbl 1205.93030, MR 2778926 |
Reference:
|
[24] Institute of Cybernetics at Tallinn University of Technology: The nonlinear control webpage..Website, http://nlcontrol.ioc.ee (2012). |
. |