Previous |  Up |  Next

Article

Title: State-space realization of nonlinear control systems: unification and extension via pseudo-linear algebra (English)
Author: Belikov, Juri
Author: Kotta, Ülle
Author: Tõnso, Maris
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 6
Year: 2012
Pages: 1100-1113
Summary lang: English
.
Category: math
.
Summary: In this paper the tools of pseudo-linear algebra are applied to the realization problem, allowing to unify the study of the continuous- and discrete-time nonlinear control systems under a single algebraic framework. The realization of nonlinear input-output equation, defined in terms of the pseudo-linear operator, in the classical state-space form is addressed by the polynomial approach in which the system is described by two polynomials from the non-commutative ring of skew polynomials. This allows to simplify the existing step-by-step algorithm-based solution. The paper presents explicit formulas to compute the differentials of the state coordinates directly from the polynomial description of the nonlinear system. The method is straight-forward and better suited for implementation in different computer algebra packages such as \textit{Mathematica} or \textit{Maple}. (English)
Keyword: nonlinear control systems
Keyword: input-output models
Keyword: realization
Keyword: pseudo-linear algebra
MSC: 62A10
MSC: 93E12
idMR: MR3052876
.
Date available: 2013-01-10T09:17:23Z
Last updated: 2013-09-24
Stable URL: http://hdl.handle.net/10338.dmlcz/143121
.
Reference: [1] Bartosiewicz, Z., Kotta, Ü., Pawłuszewicz, E., Wyrwas, M.: Algebraic formalism of differential one-forms for nonlinear control systems on time scales..Proc. Estonian Acad. Sci. 56 (2007), 264-282. Zbl 1136.93026, MR 2353693
Reference: [2] Belikov, J., Kotta, Ü., Tõnso, M.: An explicit formula for computation of the state coordinates for nonlinear i/o equation..In: 18th IFAC World Congress, Milano 2011, pp. 7221-7226.
Reference: [3] Bronstein, M., Petkovšek, M.: An introduction to pseudo-linear algebra..Theoret. Comput. Sci. 157 (1996), 3-33. Zbl 0868.34004, MR 1383396, 10.1016/0304-3975(95)00173-5
Reference: [4] Choquet-Bruhat, Y., DeWitt-Morette, C., Dillard-Bleick, M.: Analysis, Manifolds and Physics, Part I: Basics..North-Holland, Amsterdam 1982. MR 0685274
Reference: [5] Cohn, R. M.: Difference Algebra..Wiley-Interscience, New York 1965. Zbl 0127.26402, MR 0205987
Reference: [6] Conte, G., Moog, C. H., Perdon, A. M.: Algebraic Mehtods for Nonlinear Control Systems..Springer-Verlag, London 2007. MR 2305378
Reference: [7] Delaleau, E., Respondek, W.: Lowering the orders of derivatives of controls in generalized state space systems..J. Math. Syst., Estim. Control 5 (1995), 1-27. Zbl 0852.93016, MR 1651823
Reference: [8] Grizzle, J. W.: A linear algebraic framework for the analysis of discrete-time nonlinear systems..SIAM J. Control Optim. 31 (1991), 1026-1044. Zbl 0785.93036, MR 1227545, 10.1137/0331046
Reference: [9] Halás, M., Kotta, Ü., Li, Z., Wang, H., Yuan, C.: Submersive rational difference systems and their accessibility..In: International Symposium on Symbolic and Algebraic Computation, Seoul 2009, pp. 175-182. Zbl 1237.93043, MR 2742768
Reference: [10] Hauser, J., Sastry, S., Kokotović, P.: Nonlinear control via approximate input-output linearization: The ball and beam example..IEEE Trans. Automat. Control 37 (1992), 392-398. MR 1148727, 10.1109/9.119645
Reference: [11] Kotta, Ü., Kotta, P., Halás, M.: Reduction and transfer equivalence of nonlinear control systems: Unification and extension via pseudo-linear algebra..Kybernetika 46 (2010), 831-849. Zbl 1205.93027, MR 2778925
Reference: [12] Kotta, Ü., Kotta, P., Tõnso, M., Halás, M.: State-space realization of nonlinear input-output equations: Unification and extension via pseudo-linear algebra..In: 9th International Conference on Control and Automation, Santiago, Chile 2011, pp. 354-359.
Reference: [13] Kotta, Ü., Tõnso, M.: Removing or lowering the orders of input shifts in discrete-time generalized state-space systems with Mathematica..Proc. Estonian Acad. Sci. 51 (2002), 238-254. Zbl 1076.93011, MR 1951488
Reference: [14] Kotta, Ü., Tõnso, M.: Realization of discrete-time nonlinear input-output equations: Polynomial approach..Automatica 48 (2012), 255-262. MR 2889418, 10.1016/j.automatica.2011.07.010
Reference: [15] McConnell, J. C., Robson, J. C.: Noncommutative Noetherian Rings..John Wiley and Sons, New York 1987. Zbl 0980.16019, MR 0934572
Reference: [16] Pang, Z. H., Zheng, G., Luo, C.X.: Augmented state estimation and LQR control for a ball and beam system..In: 6th IEEE Conference on Industrial Electronics and Applications, Beijing 2011, pp. 1328-1332.
Reference: [17] Rapisarda, P., Willems, J. C.: State maps for linear systems..SIAM J. Control Optim. 35 (1997), 1053-1091. Zbl 0884.93006, MR 1444349, 10.1137/S0363012994268412
Reference: [18] Schaft, A. J. van der: On realization of nonlinear systems described by higher-order differential equations..Math. Systems Theory 19 (1987), 239-275. MR 0871787, 10.1007/BF01704916
Reference: [19] Sontag, E. D.: On the observability of polynomial systems, I: Finite-time problems..SIAM J. Control Optim. 17 (1979), 139-151. Zbl 0409.93013, MR 0516861, 10.1137/0317011
Reference: [20] Tõnso, M., Kotta, Ü.: Realization of continuous-time nonlinear input-output equations: Polynomial approach..Lecture Notes in Control and Inform. Sci., Springer Berlin / Heidelberg 2009, pp. 633-640.
Reference: [21] Tõnso, M., Rennik, H., Kotta, Ü.: WebMathematica-based tools for discrete-time nonlinear control systems..Proc. Estonian Acad. Sci. 58 (2009), 224-240. Zbl 1179.93079, MR 2604250
Reference: [22] Yuz, J. I., Goodwin, G. C.: On sampled-data models for nonlinear systems..IEEE Trans. Automat. Control 50 (2005), 1477-1489. MR 2171147, 10.1109/TAC.2005.856640
Reference: [23] Zhang, J., Moog, C. H., Xia, X.: Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra..Kybernetika 46 (2010), 799-830. Zbl 1205.93030, MR 2778926
Reference: [24] Institute of Cybernetics at Tallinn University of Technology: The nonlinear control webpage..Website, http://nlcontrol.ioc.ee (2012).
.

Files

Files Size Format View
Kybernetika_48-2012-6_3.pdf 331.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo