Previous |  Up |  Next

Article

Keywords:
parametrization of stabilizing controllers; inner matrices; ${\mathscr H}_\infty$ and ${\mathscr H}_2$ control
Summary:
We show how we can transform the ${\mathscr H}_\infty$ and ${\mathscr H}_2$ control problems of descriptor systems with invariant zeros on the extended imaginary into problems with state-space systems without such zeros. Then we present necessary and sufficient conditions for existence of solutions of the original problems. Numerical algorithm for ${\mathscr H}_\infty$ control is given, based on the Nevanlinna-Pick theorem. Also, we present an explicit formula for the optimal ${\mathscr H}_2$ controller.
References:
[1] Ball, J. A., Gohberg, I., Rodman, L.: Interpolation of Rational Matrix Functions. Birkhauser Verlag, 1990. MR 1083145 | Zbl 0708.15011
[2] Gahinet, P., Apkarian, P.: A linear matrix inequality approach to ${{\mathscr H}_\infty}$-control. Internat. J. Robust and Nonlinear Control 4 (1990), 4, 421-448. DOI 10.1002/rnc.4590040403 | MR 1286148
[3] Green, M., Glover, K., Limebeer, D., Doyle, J.: A $J$-spectral factorization approach to ${{\mathscr H}_\infty}$ control. SIAM J. Control Optim. 28 (1990), 6, 1350-1371. DOI 10.1137/0328071 | MR 1075207
[4] Green, M., Limebeer, D. J. N.: Linear Robust Control. Information and System Science Series, Prentice Hall, 1994.
[5] Hunt, K. J., M., M. Šebek, Kučera, V.: Polynomial solution of the standard multivariable ${{\mathscr H}_2}$-optimal control problem. IEEE Trans. Automat. Control 39 (1994), 1502-1507. DOI 10.1109/9.299644 | MR 1283931
[6] Ishihara, J. Y., Terra, M. H.: Impulse controllability and observability of rectangular descriptor systems. IEEE Trans. Automat. Control 46 (2001), 6, 991-994. DOI 10.1109/9.928613 | MR 1836508 | Zbl 1007.93006
[7] Iwasaki, T., Skelton, R. E.: All controllers for the general control problem: LMI existence conditions and state space formulas. Automatica 30 (1994), 8, 1307-1317. DOI 10.1016/0005-1098(94)90110-4 | MR 1288621
[8] Kučera, V.: A comparison of approaches to solving ${{\mathscr H}_2}$ control problems. Kybernetika 44 (2008), 3, 328-335. MR 2436035
[9] Kučera, V.: The ${{\mathscr H}_2}$ control problem: a general transfer-function solution. Internat. J. Control 80 (2007), 5, 800-815. DOI 10.1080/00207170701203590 | MR 2316383
[10] Kwakernaak, H.: Frequency domain solution of the ${{\mathscr H}_\infty}$ problem for descriptor systems. Learning, Control and Hybrid Systems, Lecture Notes in Control and Information Sciences, Springer 241 (1999), 317-336. MR 1662020
[11] Kwakernaak, H.: ${{\mathscr H}_2}$-optimization - Theory and applications to robust control design. Annual Reviews in Control 26 (2002), 45-56. DOI 10.1016/S1367-5788(02)80010-4
[12] Masubuchi, I.: Dissipativity inequalities for continuous-time descriptor systems with applications to synthesis of control gains. Systems Control Lett. 55 (2006), 158-164. DOI 10.1016/j.sysconle.2005.06.007 | MR 2187845 | Zbl 1129.93475
[13] Masubuchi, I.: Output feedback controller synthesis for descriptor systems satisfying closed-loop dissipativity. Automatica 43 (2007), 339-345. DOI 10.1016/j.automatica.2006.09.002 | MR 2281839 | Zbl 1111.93020
[14] Saberi, A., Sannuti, P., Chen, B.: ${{\mathscr H}_2}$ Optimal Control. Prentice Hall, Englewood Cliffs, NJ 1995.
[15] Stefanovski, J.: Transformation of $J$-spectral factorization of improper matrices to proper matrices. Systems Control Lett. 59 (2009), 1, 48-49. DOI 10.1016/j.sysconle.2009.11.005 | MR 2650438 | Zbl 1186.93033
[16] Stefanovski, J.: Simplified formula for the controller in optimal control problems. SIAM J. Control Appl. 45 (2007), 5, 2011-2034. DOI 10.1137/050624765 | MR 2285712
[17] Stefanovski, J.: On general ${{\mathscr H}_2}$ control: From frequency to time domain. Internat. J. Control 83 (2010), 12, 2519-2545. DOI 10.1080/00207179.2010.531399 | MR 2747356
[18] Stefanovski, J.: New results and application of singular control. IEEE Trans. Automat. Control 56 (2011), 3, 632-637. DOI 10.1109/TAC.2010.2092230 | MR 2799081
[19] Takaba, K., Morihira, N., Katayama, T.: ${{\mathscr H}_\infty}$ control for descriptor systems - A $J$-spectral factorization approach. In: Proc. 33rd IEEE Conf. Decision and Control Lake Buena Vista 1994, pp. 2251-2256.
[20] Takaba, K., Katayama, T.: ${{\mathscr H}_2}$ output feedback control for descriptor systems. Automatica 34 (1998), 841-850. DOI 10.1016/S0005-1098(98)00025-9 | MR 1635088
[21] Xin, X.: Reduced-order controllers for the ${{\mathscr H}_\infty}$ control problem with unstable invariant zeros. Automatica 40 (2004), 319-326. DOI 10.1016/j.automatica.2003.10.006 | MR 2145310
[22] Xin, X., Anderson, B. D. O., Mita, T.: Complete solution of the $4$-block ${{\mathscr H}_\infty}$ control problem with infinite and finite j$\omega$ - axis zeros. Internat. J. Robust and Nonlinear Control 10 (2000), 59-81. DOI 10.1002/(SICI)1099-1239(200002)10:2<59::AID-RNC461>3.0.CO;2-F | MR 1740971
[23] Xin, X., Hara, S., Kaneda, M.: Reduced-order proper ${{\mathscr H}_\infty}$ controllers for descriptor systems: Existence conditions and LMI-based design algorithms. IEEE Trans. Automat. Control 53 (2008), 5, 1253-1258. DOI 10.1109/TAC.2008.921016 | MR 2445678
[24] Zhou, K., Doyle, J., Glover, K.: Robust and Optimal Control. Prentice-Hall, Upper Saddle River, NJ 1996. Zbl 0999.49500
Partner of
EuDML logo