Previous |  Up |  Next

Article

Title: Transformation of optimal control problems of descriptor systems into problems with state-space systems (English)
Author: Stefanovski, Jovan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 6
Year: 2012
Pages: 1156-1179
Summary lang: English
.
Category: math
.
Summary: We show how we can transform the ${\mathscr H}_\infty$ and ${\mathscr H}_2$ control problems of descriptor systems with invariant zeros on the extended imaginary into problems with state-space systems without such zeros. Then we present necessary and sufficient conditions for existence of solutions of the original problems. Numerical algorithm for ${\mathscr H}_\infty$ control is given, based on the Nevanlinna-Pick theorem. Also, we present an explicit formula for the optimal ${\mathscr H}_2$ controller. (English)
Keyword: parametrization of stabilizing controllers
Keyword: inner matrices
Keyword: ${\mathscr H}_\infty$ and ${\mathscr H}_2$ control
MSC: 49J15
MSC: 93D15
idMR: MR3052879
.
Date available: 2013-01-10T09:24:15Z
Last updated: 2013-09-24
Stable URL: http://hdl.handle.net/10338.dmlcz/143124
.
Reference: [1] Ball, J. A., Gohberg, I., Rodman, L.: Interpolation of Rational Matrix Functions..Birkhauser Verlag, 1990. Zbl 0708.15011, MR 1083145
Reference: [2] Gahinet, P., Apkarian, P.: A linear matrix inequality approach to ${{\mathscr H}_\infty}$-control..Internat. J. Robust and Nonlinear Control 4 (1990), 4, 421-448. MR 1286148, 10.1002/rnc.4590040403
Reference: [3] Green, M., Glover, K., Limebeer, D., Doyle, J.: A $J$-spectral factorization approach to ${{\mathscr H}_\infty}$ control..SIAM J. Control Optim. 28 (1990), 6, 1350-1371. MR 1075207, 10.1137/0328071
Reference: [4] Green, M., Limebeer, D. J. N.: Linear Robust Control..Information and System Science Series, Prentice Hall, 1994.
Reference: [5] Hunt, K. J., M., M. Šebek, Kučera, V.: Polynomial solution of the standard multivariable ${{\mathscr H}_2}$-optimal control problem..IEEE Trans. Automat. Control 39 (1994), 1502-1507. MR 1283931, 10.1109/9.299644
Reference: [6] Ishihara, J. Y., Terra, M. H.: Impulse controllability and observability of rectangular descriptor systems..IEEE Trans. Automat. Control 46 (2001), 6, 991-994. Zbl 1007.93006, MR 1836508, 10.1109/9.928613
Reference: [7] Iwasaki, T., Skelton, R. E.: All controllers for the general control problem: LMI existence conditions and state space formulas..Automatica 30 (1994), 8, 1307-1317. MR 1288621, 10.1016/0005-1098(94)90110-4
Reference: [8] Kučera, V.: A comparison of approaches to solving ${{\mathscr H}_2}$ control problems..Kybernetika 44 (2008), 3, 328-335. MR 2436035
Reference: [9] Kučera, V.: The ${{\mathscr H}_2}$ control problem: a general transfer-function solution..Internat. J. Control 80 (2007), 5, 800-815. MR 2316383, 10.1080/00207170701203590
Reference: [10] Kwakernaak, H.: Frequency domain solution of the ${{\mathscr H}_\infty}$ problem for descriptor systems..Learning, Control and Hybrid Systems, Lecture Notes in Control and Information Sciences, Springer 241 (1999), 317-336. MR 1662020
Reference: [11] Kwakernaak, H.: ${{\mathscr H}_2}$-optimization - Theory and applications to robust control design..Annual Reviews in Control 26 (2002), 45-56. 10.1016/S1367-5788(02)80010-4
Reference: [12] Masubuchi, I.: Dissipativity inequalities for continuous-time descriptor systems with applications to synthesis of control gains..Systems Control Lett. 55 (2006), 158-164. Zbl 1129.93475, MR 2187845, 10.1016/j.sysconle.2005.06.007
Reference: [13] Masubuchi, I.: Output feedback controller synthesis for descriptor systems satisfying closed-loop dissipativity..Automatica 43 (2007), 339-345. Zbl 1111.93020, MR 2281839, 10.1016/j.automatica.2006.09.002
Reference: [14] Saberi, A., Sannuti, P., Chen, B.: ${{\mathscr H}_2}$ Optimal Control..Prentice Hall, Englewood Cliffs, NJ 1995.
Reference: [15] Stefanovski, J.: Transformation of $J$-spectral factorization of improper matrices to proper matrices..Systems Control Lett. 59 (2009), 1, 48-49. Zbl 1186.93033, MR 2650438, 10.1016/j.sysconle.2009.11.005
Reference: [16] Stefanovski, J.: Simplified formula for the controller in optimal control problems..SIAM J. Control Appl. 45 (2007), 5, 2011-2034. MR 2285712, 10.1137/050624765
Reference: [17] Stefanovski, J.: On general ${{\mathscr H}_2}$ control: From frequency to time domain..Internat. J. Control 83 (2010), 12, 2519-2545. MR 2747356, 10.1080/00207179.2010.531399
Reference: [18] Stefanovski, J.: New results and application of singular control..IEEE Trans. Automat. Control 56 (2011), 3, 632-637. MR 2799081, 10.1109/TAC.2010.2092230
Reference: [19] Takaba, K., Morihira, N., Katayama, T.: ${{\mathscr H}_\infty}$ control for descriptor systems - A $J$-spectral factorization approach..In: Proc. 33rd IEEE Conf. Decision and Control Lake Buena Vista 1994, pp. 2251-2256.
Reference: [20] Takaba, K., Katayama, T.: ${{\mathscr H}_2}$ output feedback control for descriptor systems..Automatica 34 (1998), 841-850. MR 1635088, 10.1016/S0005-1098(98)00025-9
Reference: [21] Xin, X.: Reduced-order controllers for the ${{\mathscr H}_\infty}$ control problem with unstable invariant zeros..Automatica 40 (2004), 319-326. MR 2145310, 10.1016/j.automatica.2003.10.006
Reference: [22] Xin, X., Anderson, B. D. O., Mita, T.: Complete solution of the $4$-block ${{\mathscr H}_\infty}$ control problem with infinite and finite j$\omega$ - axis zeros..Internat. J. Robust and Nonlinear Control 10 (2000), 59-81. MR 1740971, 10.1002/(SICI)1099-1239(200002)10:2<59::AID-RNC461>3.0.CO;2-F
Reference: [23] Xin, X., Hara, S., Kaneda, M.: Reduced-order proper ${{\mathscr H}_\infty}$ controllers for descriptor systems: Existence conditions and LMI-based design algorithms..IEEE Trans. Automat. Control 53 (2008), 5, 1253-1258. MR 2445678, 10.1109/TAC.2008.921016
Reference: [24] Zhou, K., Doyle, J., Glover, K.: Robust and Optimal Control..Prentice-Hall, Upper Saddle River, NJ 1996. Zbl 0999.49500
.

Files

Files Size Format View
Kybernetika_48-2012-6_6.pdf 369.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo