Title:
|
Finite-time consensus problem for multiple non-holonomic mobile agents (English) |
Author:
|
Wang, Jiankui |
Author:
|
Qiu, Zhihui |
Author:
|
Zhang, Guoshan |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
48 |
Issue:
|
6 |
Year:
|
2012 |
Pages:
|
1180-1193 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, the problem of finite time consensus is discussed for multiple non-holonomic mobile agents. The objective is to design a distributed finite time control law such that the controlled multiple non-holonomic mobile agents can reach consensus within any given finite settling time. We propose a novel switching control strategy with the help of time-rescalling technique and graph theory. The numerical simulations are presented to show the effectiveness of the method. (English) |
Keyword:
|
finite time consensus |
Keyword:
|
nonholonomic system |
Keyword:
|
time-rescaling |
Keyword:
|
mobile agents |
MSC:
|
93D15 |
MSC:
|
93D21 |
idMR:
|
MR3052880 |
. |
Date available:
|
2013-01-10T09:25:54Z |
Last updated:
|
2013-09-24 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143125 |
. |
Reference:
|
[1] Bhat, S. P., Bernstein, D. S.: Continuous finite-time stabilization of the translational and rotational double integrators..IEEE Trans. Automat. Control 43 (1998), 5, 678-682. Zbl 0925.93821, MR 1618028, 10.1109/9.668834 |
Reference:
|
[2] Bhat, S. P., Bernstein, D. S.: Geometric homogeneity with applications to finite-time stability..Math. Control, Signals, and Systems 17 (2005), 2, 101-127. Zbl 1110.34033, MR 2150956, 10.1007/s00498-005-0151-x |
Reference:
|
[3] Dong, W. J., Farrell, J. A.: Cooperative control of multiple nonholonomic mobile agents..IEEE Trans. Automat. Control 53 (2008), 6, 1434-1448. MR 2451233, 10.1109/TAC.2008.925852 |
Reference:
|
[4] Du, H., Li, S., Qian, C.: Finite-time attitude tracking control of spacecraft with application to attitude synchronization..IEEE Trans. Automat. Control 56 (2011), 11, 2711-2717. MR 2884015, 10.1109/TAC.2011.2159419 |
Reference:
|
[5] Du, H., Li, S., Lin, X.: Finite-time formation control of multi-agent systems via dynamic output feedback..Internat. J. Robust and Nonlinear Control (2012), published online. |
Reference:
|
[6] Feng, X., Long, W.: Reaching agreement in finite time via continuous local state feedback..In: Chinese Control Conference 2007, pp. 711-715. |
Reference:
|
[7] Hong, Y., Wang, J.: Stabilization of uncertain chained form systems within finite settling time..IEEE Trans. Automat. Control 50 (2005), 9, 1379-1384. MR 2164439, 10.1109/TAC.2005.854620 |
Reference:
|
[8] Hong, Y., Hu, J. P., Gao, L. X.: Tracking control for multi-agent consensus with an active leader and variable topology..Automatica 42 (2006), 7, 1177-1182. Zbl 1117.93300, MR 2230987, 10.1016/j.automatica.2006.02.013 |
Reference:
|
[9] Hong, Y., Jiang, Z., Feng, G.: Finite-time input-to-state stability and applications to finite-time control design..SIAM J. Control Optim. 48 (2010), 7, 4395-4418. Zbl 1210.93066, MR 2665472, 10.1137/070712043 |
Reference:
|
[10] Justh, E. W., Krishnaprasad, P. S.: Equilibrium and steering laws for planar formations..Systems Control Lett. 52 (2004), 1, 25-38. MR 2050451, 10.1016/j.sysconle.2003.10.004 |
Reference:
|
[11] Beard, R. W., Lawton, J., Young, B. J.: A decentralized approach to formation maneuvers..IEEE Trans. Robotics Automat. 19 (2003), 6, 933-941. 10.1109/TRA.2003.819598 |
Reference:
|
[12] Li, S., Liu, H., Ding, S.: A speed control for a pmsm using finite-time feedback control and disturbance compensation..Trans. Inst. Measurement and Control 32 (2010), 2, 170-187. 10.1177/0142331209339860 |
Reference:
|
[13] Li, S., Du, H., Lin, X.: Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics..Automatica 47 (2011), 8, 1706-1712. Zbl 1226.93014, MR 2886774, 10.1016/j.automatica.2011.02.045 |
Reference:
|
[14] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays..IEEE Trans. Automat. Control 49 (2004), 9, 1520-1533. MR 2086916, 10.1109/TAC.2004.834113 |
Reference:
|
[15] Wang, J., Zhang, G., Li, H.: Adaptive control of uncertain nonholonomic systems in finite time..Kybernetika 45 (2009), 5, 809-824. Zbl 1190.93086, MR 2599114 |
Reference:
|
[16] Wang, J., Zhao, Y., Song, X., Zhang, G.: Semi-global robust finite time stabilization of non-holonomic chained form systems with perturbed terms..In: 8th World Congress on Intelligent Control and Automation (WCICA) 2010, pp. 3662-3667. |
Reference:
|
[17] Wang, X. L., Hong, Y.: Finite-time consensus for multi-agent networks with second-order agent dynamics..In: Proc. 17th World Congress The International Federation of Automatic Control (2008), pp. 15185-15190. |
. |