Previous |  Up |  Next

Article

Keywords:
optimal boundary control; Burgers' equation; conjugate gradient method; modal expansion technique; control parametrization
Summary:
In this paper, we propose a novel algorithm for solving an optimal boundary control problem of the Burgers' equation. The solving method is based on the transformation of the original problem into a homogeneous boundary conditions problem. This transforms the original problem into an optimal distributed control problem. The modal expansion technique is applied to the distributed control problem of the Burgers' equation to generate a low-dimensional dynamical system. The control parametrization method is formulated for approximating the time-varying control by a finite term of the orthogonal functions with unknown coefficients determined through an optimization process. The minimization of the objective functional is performed by using a conjugate gradient method. The accuracy and convergent rate of this hybrid method are shown by some numerical examples .
References:
[1] Baker, J., Armaou, A., Christofides, P. D.: Nonlinear control of incompressible fluid flow: Application to Burgers' equation and 2D channel flow. J. Math. Anal. Appl. 252 (2000), 230-255. DOI 10.1006/jmaa.2000.6994 | MR 1797854 | Zbl 1011.76018
[2] Balas, M. J.: Active control of flexible systems. J. Optim. Theory 259 (1978), 415-436. DOI 10.1007/BF00932903 | MR 0508106 | Zbl 0362.93008
[3] Burgers, J. M.: A mathematical model illustrating the theory of turbulence. Adv. in Appl. Mech. 1 (1948), 171. DOI 10.1016/S0065-2156(08)70100-5 | MR 0027195
[4] Chang, Y., Lee, T.: Application of general orthogonal polynomials to the optimal control of time-varying linear systems. Internat. J. Control 43 (1986), 4, 1283-1304. DOI 10.1080/00207178608933538 | Zbl 0592.93027
[5] Cole, J. D.: On quasi-linear parabolic equation occurring in aerodynamics. Quart. Appl. Math. 9 (1951), 225-236. MR 0042889
[6] Curtain, R. F., Pritchard, A. J.: Functional Analysis in Modern Applied Mathematics. Academic Press, New York 1977. MR 0479787 | Zbl 0448.46002
[7] Dean, E. J., Gubernatis, P.: Pointwise control of Burgers' equation - a numerical approach. Comput. Math. Appl. 22 (1991), 7, 93-100. DOI 10.1016/0898-1221(91)90186-8 | MR 1128889 | Zbl 0829.65090
[8] Dormand, J. R., Prince, P. J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6 (1980), 19-26. DOI 10.1016/0771-050X(80)90013-3 | MR 0568599 | Zbl 0448.65045
[9] Endow, Y.: Optimal control via Fourier series of operational matrix of integration. IEEE Trans. Automat. Control 34 (1989), 7, 770-773. DOI 10.1109/9.29410 | MR 1000674 | Zbl 0687.49025
[10] Fletcher, R., Reeves, C. M.: Function minimization by conjugate gradients. Comput. J. 7 (1964), 144-160. DOI 10.1093/comjnl/7.2.149 | MR 0187375 | Zbl 0132.11701
[11] Guerrero, S., Imanuvilov, O. Yu.: Remarks on global controllability for the Burgers' equation with two control forces. Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), 897-906. DOI 10.1016/j.anihpc.2006.06.010 | MR 2371111 | Zbl 1248.93024
[12] Heidari, H., Malek, A.: Optimal boundary control for hyperdiffusion equation. Kybernetica 46 (2010), 5, 907-925. MR 2778921 | Zbl 1206.35138
[13] King, B. B., Kruger, D. A.: Burgers' equation: Galerkin least squares approximation and feedback control. Math, Comput. Modeling 38 (2003), 1078-1085. MR 2017976
[14] Kucuk, I., Sadek, I.: A numerical approach to an optimal boundary control of the viscous Burgers' equation. Appl. Math. Comput. 210 (2009), 126-135. DOI 10.1016/j.amc.2008.12.056 | MR 2504127 | Zbl 1162.65037
[15] Lellouche, J. M., Devenon, J. L., Dekeyser, I.: Boundary control on Burgers' equation. A numerical approach. Comput. Math. Appl. 28 (1994), 33-44. DOI 10.1016/0898-1221(94)00138-3 | MR 1287503
[16] Leredde, Y., Lellouche, J. M., Devenon, J. L., Dekeyser, I.: On initial, boundary condition and viscosity coefficient control for Burgers' equation. Internat. J. Numer. Meth. Fluids 28 (1998), 113-128. DOI 10.1002/(SICI)1097-0363(19980715)28:1<113::AID-FLD702>3.0.CO;2-1 | MR 1635880
[17] Morton, K. W., Mayers, D. F.: Numerical Solution of Partial Differential Equations, An Introduction. Cambridge University Press 2005. MR 2153063 | Zbl 1126.65077
[18] Naylor, A. W., Sell, G. R.: Linear Operator Theory in Engineering and Sciences. Appl. Math. Sci. 40, Springer-Verlag, New York 1982. DOI 10.1007/978-1-4612-5773-8 | MR 0672108
[19] Park, H. M., Lee, M. W., Jang, Y. D.: An efficient compuational method of boundary optimal control problems for the Burgers' equation. Comput. Methods Appl. Mech. Engrg. 166 (1998), 289-308. DOI 10.1016/S0045-7825(98)00092-9 | MR 1659187
[20] Sadek, I. S., Feng, J.: Modelling techniques for optimal control of distributed parameter systems. Math. Comput. Modelling 187 (1993), 41-58. DOI 10.1016/0895-7177(93)90057-6 | MR 1248295 | Zbl 0805.49023
[21] Sirisena, H. R., Chou, F. S.: State parameterization approach to the solution of optimal control problems. Optimal Control Appl. Methods 2 (1981), 289-298. DOI 10.1002/oca.4660020307 | MR 0630156 | Zbl 0476.49022
Partner of
EuDML logo