Previous |  Up |  Next

Article

Title: Diagonals and discrete subsets of squares (English)
Author: Burke, Dennis
Author: Tkachuk, Vladimir V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 54
Issue: 1
Year: 2013
Pages: 69-82
Summary lang: English
.
Category: math
.
Summary: In 2008 Juhász and Szentmiklóssy established that for every compact space $X$ there exists a discrete $D\subset X\times X$ with $|D|=d(X)$. We generalize this result in two directions: the first one is to prove that the same holds for any Lindelöf $\Sigma$-space $X$ and hence $X^\omega $ is $d$-separable. We give an example of a countably compact space $X$ such that $X^\omega $ is not $d$-separable. On the other hand, we show that for any Lindelöf $p$-space $X$ there exists a discrete subset $D\subset X\times X$ such that $\Delta = \{(x,x): x\in X\}\subset \overline{D}$; in particular, the diagonal $\Delta $ is a retract of $\overline{D}$ and the projection of $D$ on the first coordinate is dense in $X$. As a consequence, some properties that are not discretely reflexive in $X$ become discretely reflexive in $X\times X$. In particular, if $X$ is compact and $\overline{D}$ is Corson (Eberlein) compact for any discrete $D\subset X\times X$ then $X$ itself is Corson (Eberlein). Besides, a Lindelöf $p$-space $X$ is zero-dimensional if and only if $\overline{D}$ is zero-dimensional for any discrete $D\subset X\times X$. Under CH, we give an example of a crowded countable space $X$ such that every discrete subset of $X\times X$ is closed. In particular, the diagonal of $X$ cannot be contained in the closure of a discrete subspace of $X\times X$. (English)
Keyword: diagonal
Keyword: discrete subspaces
Keyword: $d$-separable space
Keyword: discrete reflexivity
Keyword: Lindelöf $p$-space
Keyword: Lindelöf $\Sigma $-space
Keyword: finite powers
Keyword: Corson compact spaces
Keyword: Eberlein compact spaces
Keyword: countably compact spaces
MSC: 54C10
MSC: 54C25
MSC: 54D25
MSC: 54H11
idMR: MR3038072
.
Date available: 2013-02-21T14:04:34Z
Last updated: 2015-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/143153
.
Reference: [ATW] Alas O., Tkachuk V.V., Wilson R.G.: Closures of discrete sets often reflect global properties.Topology Proc. 25 (2000), 27–44. Zbl 1002.54021, MR 1875581
Reference: [Ar] Arhangel'skii A.V.: A class of spaces which contains all metric and all locally compact spaces (in Russian).Mat. Sb. 67 (109) (1965), 1 55–88. MR 0190889
Reference: [BT] Burke D., Tkachuk V.V.: Discrete reflexivity and complements of the diagonal.Acta Math. Hungarica, to appear.
Reference: [DTTW] Dow A., Tkachenko M.G., Tkachuk V.V., Wilson R.G.: Topologies generated by discrete subspaces.Glasnik Mat. 37(57) (2002), 189–212. Zbl 1009.54005, MR 1918105
Reference: [vD] van Douwen E.K.: Applications of maximal topologies.Topology Appl. 51 (1993), 125–139. Zbl 0845.54028, MR 1229708, 10.1016/0166-8641(93)90145-4
Reference: [En] Engelking R.: General Topology.PWN, Warszawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [Gr] Gruenhage G.: Generalized Metric Spaces.Handbook of Set-Theoretic Topology, Ed. by K. Kunen and J.E. Vaughan, Elsevier Science Publisher, New York, 1984, pp. 423–501. Zbl 0794.54034, MR 0776629
Reference: [JSz] Juhász I., Szentmiklossy Z.: On $d$-separability of powers and $C_p(X)$.Topology Appl. 155 (2008), 277–281. Zbl 1134.54002, MR 2380265
Reference: [Tk1] Tkachuk V.V.: Spaces that are projective with respect to classes of mappings.Trans. Moscow Math. Soc. 50 (1988), 139–156. Zbl 0662.54007, MR 0912056
Reference: [Tk2] Tkachuk V.V.: A $C_p$-theory Problem Book. Topological and Function Spaces.Springer, New York, 2011. Zbl 1222.54002
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_54-2013-1_6.pdf 272.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo