Previous |  Up |  Next

Article

Title: Unbounded solutions of BVP for second order ODE with $p$-Laplacian on the half line (English)
Author: Liu, Yuji
Author: Wong, Patricia J. Y.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 58
Issue: 2
Year: 2013
Pages: 179-204
Summary lang: English
.
Category: math
.
Summary: By applying the Leggett-Williams fixed point theorem in a suitably constructed cone, we obtain the existence of at least three unbounded positive solutions for a boundary value problem on the half line. Our result improves and complements some of the work in the literature. (English)
Keyword: second order differential equation on a half line
Keyword: non-homogeneous boundary value problem
Keyword: Leggett-Williams fixed point theorem
MSC: 34B10
MSC: 34B15
MSC: 34B40
MSC: 35B10
idZBL: Zbl 1274.34088
idMR: MR3034821
DOI: 10.1007/s10492-013-0009-3
.
Date available: 2013-03-01T15:53:37Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143162
.
Reference: [1] Agarwal, R. P., O'Regan, D., Wong, P. J. Y.: Positive Solutions of Differential, Difference and Integral Equations.Kluwer Academic Publishers Dordrecht (1999). Zbl 1157.34301, MR 1680024
Reference: [2] Agarwal, R. P., O'Regan, D., Wong, P. J. Y.: Constant-sign solutions of a system of Fredholm integral equations.Acta Appl. Math. 80 (2004), 57-94. Zbl 1053.45004, MR 2034575, 10.1023/B:ACAP.0000013257.42126.ca
Reference: [3] Agarwal, R. P., O'Regan, D., Wong, P. J. Y.: Eigenvalues of a system of Fredholm integral equations.Math. Comput. Modelling 39 (2004), 1113-1150. Zbl 1068.45001, MR 2069517, 10.1016/S0895-7177(04)90536-5
Reference: [4] Agarwal, R. P., O'Regan, D., Wong, P. J. Y.: Triple solutions of constant sign for a system of Fredholm integral equations.Cubo 6 (2004), 1-45. Zbl 1082.45004, MR 2124824
Reference: [5] Djebali, S., Mebarki, K.: Multiple positive solutions for singular BVPs on the positive half-line.Comput. Math. Appl. 55 (2008), 2940-2952. Zbl 1142.34316, MR 2401442, 10.1016/j.camwa.2007.11.023
Reference: [6] Guo, Y., Yu, C., Wang, J.: Existence of three positive solutions for $m$-point boundary value problems on infinite intervals.Nonlinear Anal., Theory Methods Appl. 71 (2009), 717-722. Zbl 1172.34310, MR 2527493
Reference: [7] Kang, P., Wei, Z.: Multiple positive solutions of multi-point boundary value problems on the half-line.Appl. Math. Comput. 196 (2008), 402-415. Zbl 1136.34026, MR 2382579, 10.1016/j.amc.2007.06.004
Reference: [8] Leggett, R. W., Williams, L. R.: Multiple positive fixed points of nonlinear operators on ordered Banach spaces.Indiana Univ. Math. J. 28 (1979), 673-688. Zbl 0421.47033, MR 0542951, 10.1512/iumj.1979.28.28046
Reference: [9] Lian, H., Ge, W.: Solvability for second-order three-point boundary value problems on a half-line.Appl. Math. Lett. 19 (2006), 1000-1006. Zbl 1123.34307, MR 2246166, 10.1016/j.aml.2005.10.018
Reference: [10] Lian, H., Ge, W.: Existence of positive solutions for Sturm-Liouville boundary value problems on the half-line.J. Math. Anal. Appl. 321 (2006), 781-792. Zbl 1104.34020, MR 2241155, 10.1016/j.jmaa.2005.09.001
Reference: [11] Lian, H., Pang, H., Ge, W.: Triple positive solutions for boundary value problems on infinite intervals.Nonlinear Anal., Theory Methods Appl. 67 (2007), 2199-2207. Zbl 1128.34011, MR 2331870, 10.1016/j.na.2006.09.016
Reference: [12] Lian, H., Pang, H., Ge, W.: Solvability for second-order three-point boundary value problems at resonance on a half-line.J. Math. Anal. Appl. 337 (2008), 1171-1181. Zbl 1136.34034, MR 2386366, 10.1016/j.jmaa.2007.04.038
Reference: [13] Lian, H., Pang, H., Ge, W.: Unbounded upper and lower solutions method for Sturm-Liouville boundary value problem on infinite intervals.Nonlinear Anal., Theory Methods Appl. 70 (2009), 2627-2633. MR 2499729
Reference: [14] Liang, S., Zhang, J.: The existence of countably many positive solutions for one-dimensional $p$-Laplacian with infinitely many singularities on the half-line.Appl. Math. Comput. 201 (2008), 210-220. Zbl 1157.34016, MR 2432596, 10.1016/j.amc.2007.12.016
Reference: [15] Liang, S., Zhang, J.: The existence of countably many positive solutions for nonlinear singular $m$-point boundary value problems on the half-line.J. Comput. Appl. Math. 222 (2008), 229-243. Zbl 1183.34031, MR 2474626, 10.1016/j.cam.2007.10.062
Reference: [16] Liang, S., Zhang, J.: The existence of countably many positive solutions for some nonlinear three-point boundary problems on the half-line.Nonlinear Anal., Theory Methods Appl. 70 (2009), 3127-3139. Zbl 1166.34304, MR 2503058
Reference: [17] Liu, Y.: The existence of three positive solutions to integral type BVPs for second order ODEs with one-dimensional $p$-Laplacian.Bull. Malays. Math. Sci. Soc. (2) 35 359-372 (2012). Zbl 1243.34036, MR 2893462
Reference: [18] Liu, Y.: Boundary value problem for second order differential equations on unbounded domains.Acta Anal. Funct. Appl. 4 (2002), 211-216 Chinese. Zbl 1038.34030, MR 1956716
Reference: [19] Liu, Y.: Existence and unboundedness of positive solutions for singular boundary value problems on half-line.Appl. Math. Comput. 144 (2003), 543-556. Zbl 1036.34027, MR 1994092, 10.1016/S0096-3003(02)00431-9
Reference: [20] O'Regan, D., Yan, B., Agarwal, R. P.: Solutions in weighted spaces of singular boundary value problems on the half-line.J. Comput. Appl. Math. 205 (2007), 751-763. Zbl 1124.34008, MR 2329651, 10.1016/j.cam.2006.02.055
Reference: [21] Palamides, P. K., Galanis, G. N.: Positive, unbounded and monotone solutions of the singular second Painlevé equation on the half-line.Nonlinear Anal., Theory Methods Appl. 57 (2004), 401-419. Zbl 1053.34028, MR 2064098
Reference: [22] Tian, Y., Ge, W.: Positive solutions for multi-point boundary value problem on the half-line.J. Math. Anal. Appl. 325 (2007), 1339-1349. Zbl 1110.34018, MR 2270088, 10.1016/j.jmaa.2006.02.075
Reference: [23] Wei, Y., Wong, P. J. Y., Ge, W.: The existence of multiple positive solutions to boundary value problems of nonlinear delay differential equations with countably many singularities on infinite interval.J. Comput. Appl. Math. 233 (2010), 2189-2199. Zbl 1187.34086, MR 2577758, 10.1016/j.cam.2009.10.005
Reference: [24] Yan, B.: Multiple unbounded solutions of boundary value problems for second-order differential equations on the half-line.Nonlinear Anal., Theory Methods Appl. 51 (2002), 1031-1044. Zbl 1021.34021, MR 1926083
Reference: [25] Yan, B., Liu, Y.: Unbounded solutions of the singular boundary value problems for second order differential equations on the half-line.Appl. Math. Comput. 147 (2004), 629-644. Zbl 1045.34009, MR 2011077, 10.1016/S0096-3003(02)00801-9
Reference: [26] Yan, B., O'Regan, D., Agarwal, R. P.: Unbounded solutions for singular boundary value problems on the semi-infinite interval: upper and lower solutions and multiplicity.J. Comput. Appl. Math. 197 (2006), 365-386. Zbl 1116.34016, MR 2260412, 10.1016/j.cam.2005.11.010
Reference: [27] Yan, B., O'Regan, D., Agarwal, R. P.: Positive solutions for second order singular boundary value problems with derivative dependence on infinite intervals.Acta Appl. Math. 103 (2008), 19-57. Zbl 1158.34011, MR 2415171
Reference: [28] Yan, B., Timoney, R. M.: Positive solutions for nonlinear singular boundary value problems on the half line.Int. J. Math. Anal., Ruse 1 (2007), 1189-1208. Zbl 1149.34011, MR 2382022
Reference: [29] Zhang, X., Liu, L., Wu, Y.: Existence of positive solutions for second-order semipositone differential equations on the half-line.Appl. Math. Comput. 185 (2007), 628-635. Zbl 1117.34033, MR 2297833, 10.1016/j.amc.2006.07.056
Reference: [30] Zima, M.: On positive solutions of boundary value problems on the half-line.J. Math. Anal. Appl. 259 (2001), 127-136. Zbl 1003.34024, MR 1836449, 10.1006/jmaa.2000.7399
.

Files

Files Size Format View
AplMat_58-2013-2_4.pdf 329.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo