Previous |  Up |  Next

Article

Title: Congruences for certain binomial sums (English)
Author: Lee, Jung-Jo
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 1
Year: 2013
Pages: 65-71
Summary lang: English
.
Category: math
.
Summary: We exploit the properties of Legendre polynomials defined by the contour integral $\bold P_n(z)=(2\pi {\rm i})^{-1} \oint (1-2tz+t^2)^{-1/2}t^{-n-1} {\rm d} t,$ where the contour encloses the origin and is traversed in the counterclockwise direction, to obtain congruences of certain sums of central binomial coefficients. More explicitly, by comparing various expressions of the values of Legendre polynomials, it can be proved that for any positive integer $r$, a prime $p \geqslant 5$ and $n=rp^2-1$, we have $\sum _{k=0}^{\lfloor n/2\rfloor }{2k \choose k}\equiv 0, 1\text { or }-1 \pmod {p^2}$, depending on the value of $r \pmod 6$. (English)
Keyword: central binomial coefficient
Keyword: Legendre polynomial
MSC: 05A10
MSC: 05A19
MSC: 11A07
MSC: 11B65
idZBL: Zbl 1274.11052
idMR: MR3035497
DOI: 10.1007/s10587-013-0004-6
.
Date available: 2013-03-01T16:02:28Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143170
.
Related article: http://dml.cz/handle/10338.dmlcz/143334
.
Reference: [1] Callan, D.: On generating functions involving the square root of a quadratic polynomial.J. Integer Seq. 10 (2007), Article 07.5.2. Zbl 1138.05300, MR 2304410
Reference: [2] Callan, D., Chapman, R.: Divisibility of a central binomial sum (Problems and Solutions 11292&11307 [2007, 451&640]).American Mathematical Monthly 116 (2009), 468-470. MR 1542130
Reference: [3] Gradshteyn, I. S., Ryzhik, I. M.: Table of Integrals, Series, and Products. Translated from the Russian. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger 7th ed.Elsevier/Academic Press, Amsterdam (2007). MR 2360010
Reference: [4] Mattarei, S.: Asymptotics of partial sums of central binomial coefficients and Catalan numbers.arXiv:0906.4290v3.
.

Files

Files Size Format View
CzechMathJ_63-2013-1_4.pdf 223.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo