Previous |  Up |  Next

Article

Title: A generalization of the Auslander transpose and the generalized Gorenstein dimension (English)
Author: Geng, Yuxian
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 1
Year: 2013
Pages: 143-156
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a left and right Noetherian ring and $C$ a semidualizing $R$-bimodule. We introduce a transpose ${\rm Tr_{c}}M$ of an $R$-module $M$ with respect to $C$ which unifies the Auslander transpose and Huang's transpose, see Z. Y. Huang, On a generalization of the Auslander-Bridger transpose, Comm. Algebra 27 (1999), 5791–5812, in the two-sided Noetherian setting, and use ${\rm Tr_{c}}M$ to develop further the generalized Gorenstein dimension with respect to $C$. Especially, we generalize the Auslander-Bridger formula to the generalized Gorenstein dimension case. These results extend the corresponding ones on the Gorenstein dimension obtained by Auslander in M. Auslander, M. Bridger, Stable Module Theory, Mem. Amer. Math. Soc. vol. 94, Amer. Math. Soc., Providence, RI, 1969. (English)
Keyword: transpose
Keyword: semidualizing module
Keyword: generalized Gorenstein dimension
Keyword: depth
Keyword: Auslander-Bridger formula
MSC: 13C15
MSC: 13E05
MSC: 16E10
MSC: 16P40
idZBL: Zbl 1274.13022
idMR: MR3035502
DOI: 10.1007/s10587-013-0009-1
.
Date available: 2013-03-01T16:10:36Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143175
.
Reference: [1] Auslander, M., Bridger, M.: Stable Module Theory.Mem. Am. Math. Soc. 94 (1969). Zbl 0204.36402, MR 0269685
Reference: [2] Auslander, M., Reiten, I.: Cohen-Macaulay and Gorenstein Artin algebras.Representation Theory of Finite Groups and Finite-Dimensional Algebras, Proc. Conf., Bielefeld/Ger. Prog. Math. 95, Birkhäuser, Basel (1991), 221-245. Zbl 0776.16003, MR 1112162
Reference: [3] Bourbaki, N.: Elements of Mathematics. Commutative Algebra. Chapters 1-7. Transl. from the French. Softcover Edition of the 2nd printing 1989.Springer, Berlin (1989). MR 0979760
Reference: [4] Cartan, H., Eilenberg, S.: Homological Algebra.Princeton Mathematical Series, 19 Princeton University Press XV (1956). Zbl 0075.24305, MR 0077480
Reference: [5] Christensen, L. W.: Gorenstein Dimension.Lecture Notes in Mathematics 1747 Springer, Berlin (2000). MR 1799866, 10.1007/BFb0103984
Reference: [6] Christensen, L. W.: Semi-dualizing complexes and their Auslander categories.Trans. Am. Math. Soc. 353 (2001), 1839-1883. Zbl 0969.13006, MR 1813596, 10.1090/S0002-9947-01-02627-7
Reference: [7] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules.Math. Z. 220 (1995), 611-633. Zbl 0845.16005, MR 1363858, 10.1007/BF02572634
Reference: [8] Foxby, H.-B.: Gorenstein modules and related modules.Math. Scand. 31 (1972), 276-284. MR 0327752
Reference: [9] Holm, H., Jørgensen, P.: Semi-dualizing modules and related Gorenstein homological dimensions.J. Pure Appl. Algebra 205 (2006), 423-445. MR 2203625, 10.1016/j.jpaa.2005.07.010
Reference: [10] Holm, H., White, D.: Foxby equivalence over associative rings.J. Math. Kyoto Univ. 47 (2007), 781-808. Zbl 1154.16007, MR 2413065, 10.1215/kjm/1250692289
Reference: [11] Huang, Z.: On a generalization of the Auslander-Bridger transpose.Commun. Algebra 27 (1999), 5791-5812. Zbl 0948.16007, MR 1726277, 10.1080/00927879908826791
Reference: [12] Huang, Z.: $\omega$-$k$-torsionfree modules and $\omega$-left approximation dimension.Sci. China, Ser. A 44 (2001), 184-192. Zbl 1054.16002, MR 1824318, 10.1007/BF02874420
Reference: [13] Huang, Z., Tang, G.: Self-orthogonal modules over coherent rings.J. Pure Appl. Algebra 161 (2001), 167-176. Zbl 0989.16005, MR 1834083, 10.1016/S0022-4049(00)00109-2
Reference: [14] Matsumura, H.: Commutative Algebra. 2nd ed.Mathematics Lecture Note Series, 56 The Benjamin/Cummings Publishing Company, Reading, Massachusetts (1980). Zbl 0441.13001, MR 0575344
Reference: [15] Strooker, J. R.: An Auslander-Buchsbaum identity for semidualizing modules.Available from the arXiv: math.AC/0611643.
Reference: [16] Wakamatsu, T.: On modules with trivial self-extensions.J. Algebra 114 (1988), 106-114. Zbl 0646.16025, MR 0931903, 10.1016/0021-8693(88)90215-3
Reference: [17] White, D.: Gorenstein projective dimension with respect to a semidualizing module.J. Commut. Algebra 2 (2010), 111-137. MR 2607104, 10.1216/JCA-2010-2-1-111
.

Files

Files Size Format View
CzechMathJ_63-2013-1_9.pdf 291.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo