Previous |  Up |  Next

Article

Title: A non-archimedean Dugundji extension theorem (English)
Author: Kąkol, Jerzy
Author: Kubzdela, Albert
Author: Śliwa, Wiesław
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 1
Year: 2013
Pages: 157-164
Summary lang: English
.
Category: math
.
Summary: We prove a non-archimedean Dugundji extension theorem for the spaces $C^{\ast }(X,\mathbb {K})$ of continuous bounded functions on an ultranormal space $X$ with values in a non-archimedean non-trivially valued complete field $\mathbb {K}$. Assuming that $\mathbb {K}$ is discretely valued and $Y$ is a closed subspace of $X$ we show that there exists an isometric linear extender $T\colon C^{\ast }(Y,\mathbb {K})\rightarrow C^{\ast }(X,\mathbb {K})$ if $X$ is collectionwise normal or $Y$ is Lindelöf or $\mathbb {K}$ is separable. We provide also a self contained proof of the known fact that any metrizable compact subspace $Y$ of an ultraregular space $X$ is a retract of $X$. (English)
Keyword: Dugundji extension theorem
Keyword: non-archimedean space
Keyword: space of continuous functions
Keyword: 0-dimensional space
MSC: 46S10
MSC: 54C35
idZBL: Zbl 1274.46131
idMR: MR3035503
DOI: 10.1007/s10587-013-0010-8
.
Date available: 2013-03-01T16:11:58Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143176
.
Reference: [1] Arens, R.: Extension of functions on fully normal spaces.Pac. J. Math. 2 (1952), 11-22. Zbl 0046.11801, MR 0049543, 10.2140/pjm.1952.2.11
Reference: [2] Arkhangel'skij, A. V.: Spaces of mappings and rings of continuous functions.General topology III. Encycl. Math. Sci. 51 (1995), 71-156 Translation from Itogi Nauki tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 51 81-171 (1989). Zbl 0826.54017, MR 1036525, 10.1007/978-3-662-07413-8_2
Reference: [3] Borges, C. J. R.: On stratifiable spaces.Pac. J. Math. 17 (1966), 1-16. Zbl 0175.19802, MR 0188982, 10.2140/pjm.1966.17.1
Reference: [4] Groot, J. de: Non-archimedean metrics in topology.Proc. Am. Math. Soc. 7 (1956), 948-953. Zbl 0072.40201, MR 0080905, 10.1090/S0002-9939-1956-0080905-8
Reference: [5] Dugundji, J.: An extension of Tietze's theorem.Pac. J. Math. 1 (1951), 353-367. Zbl 0043.38105, MR 0044116, 10.2140/pjm.1951.1.353
Reference: [6] Ellis, R. L.: A non-Archimedean analogue of the Tietze-Urysohn extension theorem.Nederl. Akad. Wet., Proc., Ser. A 70 (1967), 332-333. Zbl 0148.16402, MR 0212771
Reference: [7] Ellis, R. L.: Extending continuous functions on zero-dimensional spaces.Math. Ann. 186 (1970), 114-122. Zbl 0182.25501, MR 0261565, 10.1007/BF01350686
Reference: [8] Engelking, R.: General Topology. Rev. and compl. ed.Sigma Series in Pure Mathematics, 6. Heldermann, Berlin (1989). Zbl 0684.54001, MR 1039321
Reference: [9] Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V.: Banach Space Theory. The Basis for Linear and Nonlinear Analysis.CMS Books in Mathematics. Springer, Berlin (2011). Zbl 1229.46001, MR 2766381
Reference: [10] Gęba, K., Semadeni, Z.: Spaces of continuous functions. V: On linear isotonical embedding of $C(\Omega_1)$ into $C(\Omega_2)$.Stud. Math. 19 (1960), 303-320. Zbl 0094.30401, MR 0117535, 10.4064/sm-19-3-303-320
Reference: [11] Gruenhage, G., Hattori, Y., Ohta, H.: Dugundji extenders and retracts on generalized ordered spaces.Fundam. Math. 158 (1998), 147-164. Zbl 0919.54010, MR 1656930
Reference: [12] Heath, R. W., Lutzer, D. J., Zenor, P. L.: On continuous extenders.Stud. Topol., Proc. Conf. Charlotte, N. C., 1974 203-213. Zbl 0312.54021, MR 0358675
Reference: [13] Kuratowski, K.: Topology. Vol. II.Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw (1968). MR 0259835
Reference: [14] Michael, E.: Some extension theorem for continuous functions.Pac. J. Math. 3 (1953), 789-806. MR 0059541, 10.2140/pjm.1953.3.789
Reference: [15] Perez-Garcia, C., Schikhof, W. H.: Localy Convex Spaces Over Non-Archimedean Valued Fields.Cambridge University Press, Cambridge (2010). MR 2598517
Reference: [16] Douwen, E. K. van: Simultaneous linear extension of continuous functions.General Topology Appl. 5 (1975), 297-319. MR 0380715, 10.1016/0016-660X(75)90002-1
Reference: [17] Douwen, E. K. van, Lutzer, D. J., Przymusiński, T. C.: Some extensions of the Tietze-Urysohn theorem.Am. Math. Mon. 84 (1977), 435-441. MR 0458374, 10.2307/2321900
Reference: [18] Rooij, A. C. M. van: Non-Archimedean Functional Analysis.Monographs and Textbooks in Pure and Applied Mathematics. 51. Marcel Dekker, New York (1978). MR 0512894
.

Files

Files Size Format View
CzechMathJ_63-2013-1_10.pdf 256.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo