Previous |  Up |  Next


Dirichlet character of polynomials; sum analogous to Kloosterman sum; identity; Gauss sum
Let $q$ be a positive integer, $\chi $ denote any Dirichlet character $\mod q$. For any integer $m$ with $(m, q)=1$, we define a sum $C(\chi, k, m; q)$ analogous to high-dimensional Kloosterman sums as follows: $$ C(\chi, k, m; q)=\sum _{a_1=1}^{q}{}' \sum _{a_2=1}^{q}{}' \cdots \sum _{a_k=1}^{q}{}' \chi (a_1+a_2+\cdots +a_k+m\overline {a_1a_2\cdots a_k}), $$ where $a\cdot \overline {a}\equiv 1\bmod q$. The main purpose of this paper is to use elementary methods and properties of Gauss sums to study the computational problem of the absolute value $|C(\chi, k, m; q)|$, and give two interesting identities for it.
[1] Burgess, D. A.: On Dirichlet characters of polynomials. Proc. Lond. Math. Soc., III. Ser. 13 (1963), 537-548. DOI 10.1112/plms/s3-13.1.537 | MR 0148627 | Zbl 0118.04704
[2] Granville, A., Soundararajan, K.: Large character sums: pretentious characters and the Pólya-Vinogradov theorem. J. Am. Math. Soc. 20 (2007), 357-384. DOI 10.1090/S0894-0347-06-00536-4 | MR 2276774 | Zbl 1210.11090
[3] Smith, R. A.: On $n$-dimensional Kloosterman sums. J. Number Theory 11 (1979), 324-343. DOI 10.1016/0022-314X(79)90006-4 | MR 0544261 | Zbl 0409.10024
[4] Ye, Y.: Estimation of exponential sums of polynomials of higher degrees. II. Acta Arith. 93 (2000), 221-235. DOI 10.4064/aa-93-3-221-235 | MR 1759916 | Zbl 0953.11028
[5] Zhang, W., Yi, Y.: On Dirichlet characters of polynomials. Bull. Lond. Math. Soc. 34 (2002), 469-473. DOI 10.1112/S0024609302001030 | MR 1897426 | Zbl 1038.11052
[6] Zhang, W., Yao, W.: A note on the Dirichlet characters of polynomials. Acta Arith. 115 (2004), 225-229. DOI 10.4064/aa115-3-3 | MR 2100501 | Zbl 1076.11048
Partner of
EuDML logo