Previous |  Up |  Next

Article

Title: From infinitesimal harmonic transformations to Ricci solitons (English)
Author: Stepanov, Sergey E.
Author: Tsyganok, Irina I.
Author: Mikeš, Josef
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 138
Issue: 1
Year: 2013
Pages: 25-36
Summary lang: English
.
Category: math
.
Summary: The concept of the Ricci soliton was introduced by R. S. Hamilton. The Ricci soliton is defined by a vector field and it is a natural generalization of the Einstein metric. We have shown earlier that the vector field of the Ricci soliton is an infinitesimal harmonic transformation. In our paper, we survey Ricci solitons geometry as an application of the theory of infinitesimal harmonic transformations. (English)
Keyword: Ricci soliton
Keyword: infinitesimal harmonic transformation
Keyword: Riemannian manifold
MSC: 53C20
MSC: 53C25
MSC: 53C43
idZBL: Zbl 1274.53096
idMR: MR3076218
DOI: 10.21136/MB.2013.143227
.
Date available: 2013-03-02T18:49:13Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143227
.
Reference: [1] Bochner, S.: Vector fields and Ricci curvature.Bull. Amer. Math. Soc. 52 (1946), 776-797. Zbl 0060.38301, MR 0018022, 10.1090/S0002-9904-1946-08647-4
Reference: [2] Chow, B., Knopf, D.: The Ricci Flow: an Introduction.Mathematical Surveys and Monographs 110, American Mathematical Society, Providence, RI (2004), 325. Zbl 1086.53085, MR 2061425
Reference: [3] Chow, B., Lu, P., Ni, L.: Hamilton's Ricci Flow.AMS Bookstore (2006), 608. Zbl 1118.53001, MR 2274812
Reference: [4] Eells, J., Lemaire, L.: A report on harmonic maps.Bull. London Math. Soc. 10 (1978), 1-68. Zbl 0401.58003, MR 0495450, 10.1112/blms/10.1.1
Reference: [5] Ezin, J. P., Bourguignon, J. P.: Scalar curvature functions in a conformal class of metrics and conformal transformations.Trans. Amer. Math. Soc. 301 (1987), 723-736. Zbl 0622.53023, MR 0882712, 10.1090/S0002-9947-1987-0882712-7
Reference: [6] Eminent, M., Nave, G. La, Mantegazza, C.: Ricci solitons---the equation point of view.Manuscript Math. 127 (2008), 345-367. MR 2448435, 10.1007/s00229-008-0210-y
Reference: [7] Gray, A.: Nearly Kähler manifolds.J. Differ. Geom. 4 (1970), 283-309. Zbl 0201.54401, MR 0267502, 10.4310/jdg/1214429504
Reference: [8] Hamilton, R. S.: The Ricci flow on surface.Mathematics and general relativity (Proc. Conf. Santa Cruz/Calif., 1986), Contemp. Math. 71 (1988), 237-262. MR 0954419, 10.1090/conm/071/954419
Reference: [9] Hamilton, R. S.: The formation of singularities in the Ricci flow.(Cambridge, MA, USA, 1993). Suppl. J. Differ. Geom. 2 (1995), 7-136. Zbl 0867.53030, MR 1375255
Reference: [10] Hsiung, C.: On the group of conformal transformations of a compact Riemannian manifold.Proc. Natl. Acad. Sci. USA 54 (1965), 1509-1513. Zbl 0129.35802, MR 0188945, 10.1073/pnas.54.6.1509
Reference: [11] Ivey, T.: Ricci solitons on compact three-manifolds.Diff. Geom. Appl. 3 (1993), 301-307. Zbl 0788.53034, MR 1249376, 10.1016/0926-2245(93)90008-O
Reference: [12] Ishihara, S., Tashiro, Y.: On Riemannian manifolds admitting a concircular transformation.Math. J. Okayama Univ. 9 (1959), 19-47. Zbl 0093.35701, MR 0120588
Reference: [13] Kobayashi, K.: Transformation Group in Differential Geometry.Springer, Berlin (1972), 182. MR 0355886
Reference: [14] Lichnerowicz, A.: Sur les tranformations conformes d'une variété riemannianne compacte.French C.R. Acad. Sci. Paris 259 (1964), 697-700. MR 0166734
Reference: [15] Nouhaud, O.: Transformations infinitesimales harmoniques.C. R. Acad., Paris, Ser. A 274 (1972), 573-576. Zbl 0242.53013, MR 0290289
Reference: [16] Perelman, G.: The entropy formula for the Ricci flow and its geometric applications.arXiv:math.DG/0211159v1 [math.DG] 11 Nov 2002 39. Zbl 1130.53001
Reference: [17] Petersen, D.: Riemannian Geometry. 2nd ed.Springer, New York (2006), 401. Zbl 1220.53002, MR 2243772
Reference: [18] Smol'nikova, M. V.: On global geometry of harmonic symmetric bilinear forms.Proc. Steklov Inst. Math. 236 (2002), 315-318. MR 1931032
Reference: [19] Stepanov, S. E., Smol'nikova, M. V., Shandra, I. G.: Infinitesimal harmonic maps.Russ. Math. 48 (2004), 65-70. Zbl 1092.53027, MR 2101680
Reference: [20] Stepanov, S. E., Shandra, I. G.: Geometry of infinitesimal harmonic transformations.Ann. Global Anal. Geom. 24 (2003), 291-299. Zbl 1035.53090, MR 1996772, 10.1023/A:1024753028255
Reference: [21] Stepanov, S. E., Shelepova, V. N.: A note on Ricci soliton.Mathematical Notes 86 (2009), 447-450. MR 2591387, 10.1134/S0001434609090193
Reference: [22] Yano, K.: The Theory of Lie Derivatives and Its Applications.Nord-Holland, Amsterdam (1957), 299. Zbl 0077.15802, MR 0088769
Reference: [23] Yano, K.: Integral Formulas in Riemannian Geometry.Marcel Dekker, New York (1970), 156. Zbl 0213.23801, MR 0284950
Reference: [24] Yano, K., Nagano, T.: On geodesic vector fields in a compact orientable Riemannian space.Comment. Math. Helv. 35 (1961), 55-64. MR 0124854, 10.1007/BF02567005
Reference: [25] Yano, K.: Differential Geometry on Complex and Almost Complex Spaces.Pergamon Press, Oxford (1965), 323. Zbl 0127.12405, MR 0187181
Reference: [26] Yau, S.-T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry.Indiana Univ. Math. J. 25 (1976), 659-670. Zbl 0335.53041, MR 0417452, 10.1512/iumj.1976.25.25051
Reference: [27] Zhang, Z.-H.: Gradient shrinking solitons with vanishing Weyl tensor.Pac. J. Math. 242 (2009), 189-200. Zbl 1171.53332, MR 2525510, 10.2140/pjm.2009.242.189
.

Files

Files Size Format View
MathBohem_138-2013-1_3.pdf 273.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo