Previous |  Up |  Next

Article

Title: Groupoids assigned to relational systems (English)
Author: Chajda, Ivan
Author: Länger, Helmut
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 138
Issue: 1
Year: 2013
Pages: 15-23
Summary lang: English
.
Category: math
.
Summary: By a relational system we mean a couple $(A,R)$ where $A$ is a set and $R$ is a binary relation on $A$, i.e.\ $R\subseteq A\times A$. To every directed relational system $\mathcal {A}=(A,R)$ we assign a groupoid ${\mathcal G}({\mathcal A})=(A,\cdot )$ on the same base set where $xy=y$ if and only if $(x,y)\in R$. We characterize basic properties of $R$ by means of identities satisfied by ${\mathcal G}({\mathcal A})$ and show how homomorphisms between those groupoids are related to certain homomorphisms of relational systems. (English)
Keyword: relational system
Keyword: groupoid
Keyword: directed system
Keyword: $g$-homomorphism
MSC: 08A02
MSC: 20N02
idZBL: Zbl 1274.08002
idMR: MR3076217
DOI: 10.21136/MB.2013.143226
.
Date available: 2013-03-02T18:47:17Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143226
.
Reference: [1] Chajda, I.: Congruences in transitive relational systems.Miskolc Math. Notes 5 (2004), 19-23. Zbl 1047.08001, MR 2040973, 10.18514/MMN.2004.77
Reference: [2] Chajda, I.: Class preserving mappings of equivalence systems.Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 43 (2004), 61-64. Zbl 1077.08001, MR 2124603
Reference: [3] Chajda, I.: Homomorphisms of directed posets.Asian-Eur. J. Math. 1 (2008), 45-51. Zbl 1159.06002, MR 2400299, 10.1142/S1793557108000059
Reference: [4] Chajda, I., Hošková, Š.: A characterization of cone preserving mappings of quasiordered sets.Miskolc Math. Notes 6 (2005), 147-152. Zbl 1095.08001, MR 2199159, 10.18514/MMN.2005.107
Reference: [5] Chajda, I., Länger, H.: Quotients and homomorphisms of relational systems.Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 49 (2010), 37-47. Zbl 1241.08001, MR 2796945
Reference: [6] Mal'cev, A. I.: Algebraic Systems.Springer, New York (1973). MR 0349384
Reference: [7] Pöschel, R.: Graph algebras and graph varieties.Algebra Univers. 27 (1990), 559-577. Zbl 0725.08002, MR 1387902, 10.1007/BF01189000
Reference: [8] Riguet, J.: Relations binaires, fermetures, correspondances de Galois.Bull. Soc. Math. Fr. 76 (1948), 114-155 French. Zbl 0033.00603, MR 0028814, 10.24033/bsmf.1401
.

Files

Files Size Format View
MathBohem_138-2013-1_2.pdf 233.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo