Previous |  Up |  Next

Article

Title: Free non-archimedean topological groups (English)
Author: Megrelishvili, Michael
Author: Shlossberg, Menachem
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 54
Issue: 2
Year: 2013
Pages: 273-312
Summary lang: English
.
Category: math
.
Summary: We study free topological groups defined over uniform spaces in some subclasses of the class $\mathbf{NA}$ of non-archimedean groups. Our descriptions of the corresponding topologies show that for metrizable uniformities the corresponding free balanced, free abelian and free Boolean $\mathbf{NA}$ groups are also metrizable. Graev type ultra-metrics determine the corresponding free topologies. Such results are in a striking contrast with free balanced and free abelian topological groups cases (in standard varieties). Another contrasting advantage is that the induced topological group actions on free abelian $\mathbf{NA}$ groups frequently remain continuous. One of the main applications is: any epimorphism in the category $\mathbf{NA}$ must be dense. Moreover, the same methods improve the following result of T.H. Fay \cite{Fay}: the inclusion of a proper open subgroup $H\hookrightarrow G\in \mathbf{TGR}$ is not an epimorphism in the category $\mathbf{TGR}$ of all Hausdorff topological groups. A key tool in the proofs is Pestov's test of epimorphisms [V.G. Pestov, {\it Epimorphisms of Hausdorff groups by way of topological dynamics\/}, New Zealand J. Math. {\bf 26} (1997), 257--262]. Our results provide a convenient way to produce surjectively universal $\mathbf{NA}$ abelian and balanced groups. In particular, we unify and strengthen some recent results of Gao [{\it Graev ultrametrics and surjectively universal non-Archimedean Polish groups\/}, Topology Appl. {\bf 160} (2013), no. 6, 862--870] and Gao-Xuan [{\it On non-Archimedean Polish groups with two-sided invariant metrics\/}, preprint, 2012] as well as classical results about profinite groups which go back to Iwasawa and Gildenhuys-Lim [{\it Free pro-C-groups\/}, Math. Z. {\bf 125} (1972), 233--254]. (English)
Keyword: epimorphisms
Keyword: free profinite group
Keyword: free topological $G$-group
Keyword: non-archimedean group
Keyword: ultra-metric
Keyword: ultra-norm
MSC: 22A05
MSC: 54E15
MSC: 54H11
idZBL: Zbl 06221269
idMR: MR3067710
.
Date available: 2014-07-30T06:08:15Z
Last updated: 2015-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/143275
.
Reference: [1] Arens R., Eells J.: On embedding uniform and topological spaces.Pacific J. Math. 6 (1956), 397–403. Zbl 0073.39601, MR 0081458, 10.2140/pjm.1956.6.397
Reference: [2] Arhangel'skii A., Tkachenko M.: Topological groups and related structures.Atlantis Studies in Mathematics, 1, Series Editor: J. van Mill, Atlantis Press, World Scientific, Amsterdam-Paris, 2008. MR 2433295
Reference: [3] Becker H., Kechris A.: The Descriptive Set Theory of Polish Group Actions.London Mathematical Society Lecture Notes Ser., 232, Cambridge University Press, Cambridge, 1996. Zbl 0949.54052, MR 1425877
Reference: [4] Dierolf S., Roelcke W.: Uniform Structures in Topological Groups and their Quotients.McGraw-Hill, New York, 1981.
Reference: [5] Dikranjan D., Tholen W.: Categorical Structure of Closure Operators with Applications to Topology, Algebra and Discrete Mathematics.Mathematics and its Applications, 346, Kluwer Academic Publ., Dordrecht, 1995. Zbl 0853.18002, MR 1368854
Reference: [6] Dikranjan D.: Recent advances in minimal topological groups.Topology Appl. 85 (1998), 53–91. Zbl 0983.54037, MR 1617454, 10.1016/S0166-8641(97)00141-7
Reference: [7] Dikranjan D., Megrelishvili M.: Minimality properties in topological groups.in Recent Progress in General Topology III(to appear).
Reference: [8] Dikranjan D., Tkachenko M.: Weakly complete free topological groups.Topology Appl. 112 (2001), 259–287. Zbl 0979.54038, MR 1824163, 10.1016/S0166-8641(99)00235-7
Reference: [9] Ding L.: On surjectively universal Polish groups.Adv. Math. 231 (2012), no. 5, 2557–2572. Zbl 1257.03076, MR 2970459, 10.1016/j.aim.2012.06.029
Reference: [10] Ding L., Gao S.: Graev metric groups and Polishable subgroups.Adv. Math. 213 (2007), 887–901. Zbl 1120.03026, MR 2332614, 10.1016/j.aim.2007.01.014
Reference: [11] Ellis R.: Extending uniformly continuous pseudoultrametrics and uniform retracts.Proc. Amer. Math. Soc. 30 (1971), 599–602. MR 0283752, 10.1090/S0002-9939-1971-0283752-5
Reference: [12] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [13] Fay T.H.: A note on Hausdorff groups.Bull. Austral. Math. Soc. 13 (1975), 117–119. Zbl 0302.18001, MR 0387474, 10.1017/S0004972700024291
Reference: [14] Fried M.D., Jarden M.: Field Arithmetic.A Series of Modern Surveys in Mathematics, 11, Third Edition, Springer, Berlin, 2008. Zbl 1145.12001, MR 2445111
Reference: [15] Gao S.: Graev ultrametrics and surjectively universal non-Archimedean Polish groups.Topology Appl. 160 (2013), no. 6, 862–870. MR 3028617, 10.1016/j.topol.2013.02.009
Reference: [16] Gao S., Xuan M.: On non-Archimedean Polish groups with two-sided invariant metrics.preprint, 2012.
Reference: [17] Gildenhuys D., Lim C.-K.: Free pro-C-groups.Math. Z. 125 (1972), 233–254. Zbl 0221.20048, MR 0310071
Reference: [18] Graev M.I.: Theory of topological groups I.(in Russian), Uspekhi Mat. Nauk 5 (1950), 2–56. MR 0036245
Reference: [19] Higasikawa M.: Topological group with several disconnectedness.arXiv:math/0106105v1, 2000, 1–13.
Reference: [20] Hewitt E., Ross K.A.: Abstract Harmonic Analysis I.Springer, Berlin, 1963.
Reference: [21] Hofmann K.H., Morris S.A.: Free compact groups I: Free compact abelian groups.Topology Appl. 23 (1986), 41–64. Zbl 0627.22004, MR 0849093, 10.1016/0166-8641(86)90016-7
Reference: [22] Hušek M.: Urysohn universal space, its development and Hausdorff's approach.Topology Appl. 155 (2008), 1493–1501. Zbl 1159.54006, MR 2435145, 10.1016/j.topol.2008.03.020
Reference: [23] Isbell J.: Uniform Spaces.American Mathematical Society, Providence, 1964. Zbl 0124.15601, MR 0170323
Reference: [24] Katětov M.: On universal metric spaces.in General Topology and its Relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topol. Symp. 1986, Z. Frolík, ed., Heldermann, Berlin, 1988, pp. 323-330. MR 0952617
Reference: [25] Kulpa W.: On uniform universal spaces.Fund. Math. 69 (1970), 243–251. Zbl 0203.55701, MR 0273562
Reference: [26] Lemin A.Yu.: Isosceles metric spaces and groups.in Cardinal invariants and mappings of topological spaces, Izhevsk, 1984, pp. 26–31. MR 0845083
Reference: [27] Lemin A.Yu.: The category of ultrametric spaces is isomorphic to the category of complete, atomic, tree-like, and real graduated lattices LAT*.Algebra Universalis 50 (2003), 35–49. Zbl 1094.54004, MR 2026825, 10.1007/s00012-003-1806-4
Reference: [28] Lemin A.Yu., Smirnov Yu.M.: Groups of isometries of metric and ultrametric spaces and their subgroups.Russian Math. Surveys 41 (1986), no. 6, 213–214. MR 0890503, 10.1070/RM1986v041n06ABEH004235
Reference: [29] Markov A.A.: On free topological groups.Izv. Akad. Nauk SSSR Ser. Mat. 9 (1945), 3–64. MR 0012301
Reference: [30] Megrelishvili M.: Compactification and Factorization in the Category of $G$-spaces.in Categorical Topology and its Relation to Analysis, Algebra and Combinatorics, J. Adámek and S. Maclane, eds., World Scientific, Singapore, 1989, pp. 220–237. MR 1047903
Reference: [31] Megrelishvili M.: Free topological G-groups.New Zealand J. Math. 25 (1996), no. 1, 59–72. Zbl 0848.22003, MR 1398366
Reference: [32] Megrelishvili M.: Fragmentability and continuity of semigroup actions.Semigroup Forum 57 (1998), 101–126. Zbl 0916.47029, MR 1621881, 10.1007/PL00005960
Reference: [33] Megrelishvili M.: Compactifications of semigroups and semigroup actions.Topology Proc. 31 (2007), no. 2, 611–650. MR 2476633
Reference: [34] Megrelishvili M., Scarr T.: The equivariant universality and couniversality of the Cantor cube.Fund. Math. 167 (2001), no. 3, 269–275. Zbl 0967.54037, MR 1815091, 10.4064/fm167-3-4
Reference: [35] Megrelishvili M., Shlossberg M.: Notes on non-archimedean topological groups.Topology Appl. 159 (2012), 2497–2505. Zbl 1247.22002, MR 2921838, 10.1016/j.topol.2011.06.069
Reference: [36] Megrelishvili M., Shlossberg M.: Notes on non-archimedean topological groups.First version (2010) of arxiv.org/abs/1010.5987. Zbl 1247.22002
Reference: [37] Morris S.A.: Varieties of topological groups.Bull. Austral. Math. Soc. 1 (1969), 145–160. Zbl 0980.22004, MR 0259010, 10.1017/S0004972700041393
Reference: [38] Nummela E.C.: On epimorphisms of topological groups.Gen. Topology Appl. 9 (1978), 155–167. Zbl 0388.18001, MR 0492044, 10.1016/0016-660X(78)90060-0
Reference: [39] Nummela E.C.: Uniform free topological groups and Samuel compactifications.Topology Appl. 13 (1982), no. 1, 77–83. Zbl 0471.22001, MR 0637429, 10.1016/0166-8641(82)90009-8
Reference: [40] Pestov V.G.: Neighborhoods of identity in free topological groups.Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1985, no. 3, 8–10. MR 0802607
Reference: [41] Pestov V.G.: Universal arrows to forgetful functors from categories of topological algebras.Bull. Austral. Math. Soc. 48 (1993), 209–249. MR 1238798, 10.1017/S0004972700015665
Reference: [42] Pestov V.G.: Epimorphisms of Hausdorff groups by way of topological dynamics.New Zealand J. Math. 26 (1997), 257–262. Zbl 0891.22003, MR 1601659
Reference: [43] Pestov V.G.: On free actions, minimal flows, and a problem by Ellis.Trans. Amer. Math. Soc. 350 (1998), 4149–4175. Zbl 0911.54034, MR 1608494, 10.1090/S0002-9947-98-02329-0
Reference: [44] Pestov V.: Topological groups: where to from here?.Topology Proc. 24 (1999), 421–502; http://arXiv.org/abs/math.GN/9910144. Zbl 1026.22002, MR 1876385
Reference: [45] Pestov V.: Dynamics of infinite-dimensional groups. The Ramsey-Dvoretzky-Milman phenomenon.University Lecture Series, 40, American Mathematical Society, Providence, RI, 2006. Zbl 1123.37003, MR 2277969
Reference: [46] Ribes L., Zalesskii P.A.: Profinite Groups.2nd ed., Springer, Berlin, 2010. Zbl 1197.20022, MR 2599132
Reference: [47] Roelcke W., Dierolf S.: Uniform Structures on Topological Groups and their Quotients.Mc Graw-hill, New York, 1981. Zbl 0489.22001, MR 0644485
Reference: [48] van Rooij A.C.M.: Non-Archimedean Functional Analysis.Monographs and Textbooks in Pure and Applied Math. 51, Marcel Dekker, Inc., New York, 1978. Zbl 0396.46061, MR 0512894
Reference: [49] Savchenko A., Zarichnyi M.: Metrization of free groups on ultrametric spaces.Topology Appl. 157 (2010), 724–729. Zbl 1185.54031, MR 2585405, 10.1016/j.topol.2009.08.015
Reference: [50] Schikhof W.H.: Isometrical embeddings of ultrametric spaces into non- Archimedean valued fields.Indag. Math. 46 (1984), 51–53. Zbl 0537.46060, MR 0748978, 10.1016/1385-7258(84)90056-8
Reference: [51] Sipacheva O.V.: The topology of a free topological group.J. Math. Sci. (N.Y.) 131 (2005), no. 4, 5765–5838. MR 2056625, 10.1007/s10958-005-0445-z
Reference: [52] Schröder L.: Linearizability of non-expansive semigroup actions on metric spaces.Topology Appl. 155 (2008), 1576–1579. Zbl 1149.54020, MR 2435150, 10.1016/j.topol.2007.04.022
Reference: [53] Shakhmatov D., Pelant J., Watson S.: A universal complete metric abelian group of a given weight.in Topology with Applications (Szekszárd, 1993), 431–439, Bolyai Soc. Math. Stud., 4, János Bolyai Mathematical Society, Budapest, 1995. Zbl 0887.54032, MR 1374823
Reference: [54] Shakhmatov D., Spěvák J.: Group-valued continuous functions with the topology of pointwise convergence.Topology Appl. 157 (2010), 1518–1540. Zbl 1195.54040, MR 2610463, 10.1016/j.topol.2009.06.022
Reference: [55] Teleman S.: Sur la représentation linéare des groupes topologiques.Ann. Sci. Ecole Norm. Sup. 74 (1957), 319–339. MR 0097458
Reference: [56] Tkachenko M.G.: On topologies of free groups.Czechoslovak Math. J. 34 (1984), 541–551. Zbl 0584.22001, MR 0764436
Reference: [57] Uspenskij V.V.: On the group of isometries of the Urysohn universal metric space.Comment. Math. Univ. Carolin. 31 (1990), 181–182. Zbl 0699.54011, MR 1056185
Reference: [58] Uspenskij V.V.: Free topological groups of metrizable spaces.Math. USSR Izvestiya 37 (1991), 657–680. Zbl 0739.22002, MR 1098628, 10.1070/IM1991v037n03ABEH002163
Reference: [59] Uspenskij V.V.: The epimorphism problem for Hausdorff topological groups.Topology Appl. 57 (1994), 287–294. Zbl 0810.22002, MR 1278029, 10.1016/0166-8641(94)90055-8
Reference: [60] Warner S.: Topological Fields.North Holland Mathematics Studies, 157, North-Holland-Amsterdam, London, New York, Tokyo, 1993. Zbl 0683.12014, MR 1002951
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_54-2013-2_13.pdf 482.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo