Previous |  Up |  Next

Article

Keywords:
epimorphisms; free profinite group; free topological $G$-group; non-archimedean group; ultra-metric; ultra-norm
Summary:
We study free topological groups defined over uniform spaces in some subclasses of the class $\mathbf{NA}$ of non-archimedean groups. Our descriptions of the corresponding topologies show that for metrizable uniformities the corresponding free balanced, free abelian and free Boolean $\mathbf{NA}$ groups are also metrizable. Graev type ultra-metrics determine the corresponding free topologies. Such results are in a striking contrast with free balanced and free abelian topological groups cases (in standard varieties). Another contrasting advantage is that the induced topological group actions on free abelian $\mathbf{NA}$ groups frequently remain continuous. One of the main applications is: any epimorphism in the category $\mathbf{NA}$ must be dense. Moreover, the same methods improve the following result of T.H. Fay \cite{Fay}: the inclusion of a proper open subgroup $H\hookrightarrow G\in \mathbf{TGR}$ is not an epimorphism in the category $\mathbf{TGR}$ of all Hausdorff topological groups. A key tool in the proofs is Pestov's test of epimorphisms [V.G. Pestov, {\it Epimorphisms of Hausdorff groups by way of topological dynamics\/}, New Zealand J. Math. {\bf 26} (1997), 257--262]. Our results provide a convenient way to produce surjectively universal $\mathbf{NA}$ abelian and balanced groups. In particular, we unify and strengthen some recent results of Gao [{\it Graev ultrametrics and surjectively universal non-Archimedean Polish groups\/}, Topology Appl. {\bf 160} (2013), no. 6, 862--870] and Gao-Xuan [{\it On non-Archimedean Polish groups with two-sided invariant metrics\/}, preprint, 2012] as well as classical results about profinite groups which go back to Iwasawa and Gildenhuys-Lim [{\it Free pro-C-groups\/}, Math. Z. {\bf 125} (1972), 233--254].
References:
[1] Arens R., Eells J.: On embedding uniform and topological spaces. Pacific J. Math. 6 (1956), 397–403. DOI 10.2140/pjm.1956.6.397 | MR 0081458 | Zbl 0073.39601
[2] Arhangel'skii A., Tkachenko M.: Topological groups and related structures. Atlantis Studies in Mathematics, 1, Series Editor: J. van Mill, Atlantis Press, World Scientific, Amsterdam-Paris, 2008. MR 2433295
[3] Becker H., Kechris A.: The Descriptive Set Theory of Polish Group Actions. London Mathematical Society Lecture Notes Ser., 232, Cambridge University Press, Cambridge, 1996. MR 1425877 | Zbl 0949.54052
[4] Dierolf S., Roelcke W.: Uniform Structures in Topological Groups and their Quotients. McGraw-Hill, New York, 1981.
[5] Dikranjan D., Tholen W.: Categorical Structure of Closure Operators with Applications to Topology, Algebra and Discrete Mathematics. Mathematics and its Applications, 346, Kluwer Academic Publ., Dordrecht, 1995. MR 1368854 | Zbl 0853.18002
[6] Dikranjan D.: Recent advances in minimal topological groups. Topology Appl. 85 (1998), 53–91. DOI 10.1016/S0166-8641(97)00141-7 | MR 1617454 | Zbl 0983.54037
[7] Dikranjan D., Megrelishvili M.: Minimality properties in topological groups. in Recent Progress in General Topology III(to appear).
[8] Dikranjan D., Tkachenko M.: Weakly complete free topological groups. Topology Appl. 112 (2001), 259–287. DOI 10.1016/S0166-8641(99)00235-7 | MR 1824163 | Zbl 0979.54038
[9] Ding L.: On surjectively universal Polish groups. Adv. Math. 231 (2012), no. 5, 2557–2572. DOI 10.1016/j.aim.2012.06.029 | MR 2970459 | Zbl 1257.03076
[10] Ding L., Gao S.: Graev metric groups and Polishable subgroups. Adv. Math. 213 (2007), 887–901. DOI 10.1016/j.aim.2007.01.014 | MR 2332614 | Zbl 1120.03026
[11] Ellis R.: Extending uniformly continuous pseudoultrametrics and uniform retracts. Proc. Amer. Math. Soc. 30 (1971), 599–602. DOI 10.1090/S0002-9939-1971-0283752-5 | MR 0283752
[12] Engelking R.: General Topology. Heldermann Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[13] Fay T.H.: A note on Hausdorff groups. Bull. Austral. Math. Soc. 13 (1975), 117–119. DOI 10.1017/S0004972700024291 | MR 0387474 | Zbl 0302.18001
[14] Fried M.D., Jarden M.: Field Arithmetic. A Series of Modern Surveys in Mathematics, 11, Third Edition, Springer, Berlin, 2008. MR 2445111 | Zbl 1145.12001
[15] Gao S.: Graev ultrametrics and surjectively universal non-Archimedean Polish groups. Topology Appl. 160 (2013), no. 6, 862–870. DOI 10.1016/j.topol.2013.02.009 | MR 3028617
[16] Gao S., Xuan M.: On non-Archimedean Polish groups with two-sided invariant metrics. preprint, 2012.
[17] Gildenhuys D., Lim C.-K.: Free pro-C-groups. Math. Z. 125 (1972), 233–254. MR 0310071 | Zbl 0221.20048
[18] Graev M.I.: Theory of topological groups I. (in Russian), Uspekhi Mat. Nauk 5 (1950), 2–56. MR 0036245
[19] Higasikawa M.: Topological group with several disconnectedness. arXiv:math/0106105v1, 2000, 1–13.
[20] Hewitt E., Ross K.A.: Abstract Harmonic Analysis I. Springer, Berlin, 1963.
[21] Hofmann K.H., Morris S.A.: Free compact groups I: Free compact abelian groups. Topology Appl. 23 (1986), 41–64. DOI 10.1016/0166-8641(86)90016-7 | MR 0849093 | Zbl 0627.22004
[22] Hušek M.: Urysohn universal space, its development and Hausdorff's approach. Topology Appl. 155 (2008), 1493–1501. DOI 10.1016/j.topol.2008.03.020 | MR 2435145 | Zbl 1159.54006
[23] Isbell J.: Uniform Spaces. American Mathematical Society, Providence, 1964. MR 0170323 | Zbl 0124.15601
[24] Katětov M.: On universal metric spaces. in General Topology and its Relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topol. Symp. 1986, Z. Frolík, ed., Heldermann, Berlin, 1988, pp. 323-330. MR 0952617
[25] Kulpa W.: On uniform universal spaces. Fund. Math. 69 (1970), 243–251. MR 0273562 | Zbl 0203.55701
[26] Lemin A.Yu.: Isosceles metric spaces and groups. in Cardinal invariants and mappings of topological spaces, Izhevsk, 1984, pp. 26–31. MR 0845083
[27] Lemin A.Yu.: The category of ultrametric spaces is isomorphic to the category of complete, atomic, tree-like, and real graduated lattices LAT*. Algebra Universalis 50 (2003), 35–49. DOI 10.1007/s00012-003-1806-4 | MR 2026825 | Zbl 1094.54004
[28] Lemin A.Yu., Smirnov Yu.M.: Groups of isometries of metric and ultrametric spaces and their subgroups. Russian Math. Surveys 41 (1986), no. 6, 213–214. DOI 10.1070/RM1986v041n06ABEH004235 | MR 0890503
[29] Markov A.A.: On free topological groups. Izv. Akad. Nauk SSSR Ser. Mat. 9 (1945), 3–64. MR 0012301
[30] Megrelishvili M.: Compactification and Factorization in the Category of $G$-spaces. in Categorical Topology and its Relation to Analysis, Algebra and Combinatorics, J. Adámek and S. Maclane, eds., World Scientific, Singapore, 1989, pp. 220–237. MR 1047903
[31] Megrelishvili M.: Free topological G-groups. New Zealand J. Math. 25 (1996), no. 1, 59–72. MR 1398366 | Zbl 0848.22003
[32] Megrelishvili M.: Fragmentability and continuity of semigroup actions. Semigroup Forum 57 (1998), 101–126. DOI 10.1007/PL00005960 | MR 1621881 | Zbl 0916.47029
[33] Megrelishvili M.: Compactifications of semigroups and semigroup actions. Topology Proc. 31 (2007), no. 2, 611–650. MR 2476633
[34] Megrelishvili M., Scarr T.: The equivariant universality and couniversality of the Cantor cube. Fund. Math. 167 (2001), no. 3, 269–275. DOI 10.4064/fm167-3-4 | MR 1815091 | Zbl 0967.54037
[35] Megrelishvili M., Shlossberg M.: Notes on non-archimedean topological groups. Topology Appl. 159 (2012), 2497–2505. DOI 10.1016/j.topol.2011.06.069 | MR 2921838 | Zbl 1247.22002
[36] Megrelishvili M., Shlossberg M.: Notes on non-archimedean topological groups. First version (2010) of arxiv.org/abs/1010.5987. Zbl 1247.22002
[37] Morris S.A.: Varieties of topological groups. Bull. Austral. Math. Soc. 1 (1969), 145–160. DOI 10.1017/S0004972700041393 | MR 0259010 | Zbl 0980.22004
[38] Nummela E.C.: On epimorphisms of topological groups. Gen. Topology Appl. 9 (1978), 155–167. DOI 10.1016/0016-660X(78)90060-0 | MR 0492044 | Zbl 0388.18001
[39] Nummela E.C.: Uniform free topological groups and Samuel compactifications. Topology Appl. 13 (1982), no. 1, 77–83. DOI 10.1016/0166-8641(82)90009-8 | MR 0637429 | Zbl 0471.22001
[40] Pestov V.G.: Neighborhoods of identity in free topological groups. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1985, no. 3, 8–10. MR 0802607
[41] Pestov V.G.: Universal arrows to forgetful functors from categories of topological algebras. Bull. Austral. Math. Soc. 48 (1993), 209–249. DOI 10.1017/S0004972700015665 | MR 1238798
[42] Pestov V.G.: Epimorphisms of Hausdorff groups by way of topological dynamics. New Zealand J. Math. 26 (1997), 257–262. MR 1601659 | Zbl 0891.22003
[43] Pestov V.G.: On free actions, minimal flows, and a problem by Ellis. Trans. Amer. Math. Soc. 350 (1998), 4149–4175. DOI 10.1090/S0002-9947-98-02329-0 | MR 1608494 | Zbl 0911.54034
[44] Pestov V.: Topological groups: where to from here?. Topology Proc. 24 (1999), 421–502; http://arXiv.org/abs/math.GN/9910144 MR 1876385 | Zbl 1026.22002
[45] Pestov V.: Dynamics of infinite-dimensional groups. The Ramsey-Dvoretzky-Milman phenomenon. University Lecture Series, 40, American Mathematical Society, Providence, RI, 2006. MR 2277969 | Zbl 1123.37003
[46] Ribes L., Zalesskii P.A.: Profinite Groups. 2nd ed., Springer, Berlin, 2010. MR 2599132 | Zbl 1197.20022
[47] Roelcke W., Dierolf S.: Uniform Structures on Topological Groups and their Quotients. Mc Graw-hill, New York, 1981. MR 0644485 | Zbl 0489.22001
[48] van Rooij A.C.M.: Non-Archimedean Functional Analysis. Monographs and Textbooks in Pure and Applied Math. 51, Marcel Dekker, Inc., New York, 1978. MR 0512894 | Zbl 0396.46061
[49] Savchenko A., Zarichnyi M.: Metrization of free groups on ultrametric spaces. Topology Appl. 157 (2010), 724–729. DOI 10.1016/j.topol.2009.08.015 | MR 2585405 | Zbl 1185.54031
[50] Schikhof W.H.: Isometrical embeddings of ultrametric spaces into non- Archimedean valued fields. Indag. Math. 46 (1984), 51–53. DOI 10.1016/1385-7258(84)90056-8 | MR 0748978 | Zbl 0537.46060
[51] Sipacheva O.V.: The topology of a free topological group. J. Math. Sci. (N.Y.) 131 (2005), no. 4, 5765–5838. DOI 10.1007/s10958-005-0445-z | MR 2056625
[52] Schröder L.: Linearizability of non-expansive semigroup actions on metric spaces. Topology Appl. 155 (2008), 1576–1579. DOI 10.1016/j.topol.2007.04.022 | MR 2435150 | Zbl 1149.54020
[53] Shakhmatov D., Pelant J., Watson S.: A universal complete metric abelian group of a given weight. in Topology with Applications (Szekszárd, 1993), 431–439, Bolyai Soc. Math. Stud., 4, János Bolyai Mathematical Society, Budapest, 1995. MR 1374823 | Zbl 0887.54032
[54] Shakhmatov D., Spěvák J.: Group-valued continuous functions with the topology of pointwise convergence. Topology Appl. 157 (2010), 1518–1540. DOI 10.1016/j.topol.2009.06.022 | MR 2610463 | Zbl 1195.54040
[55] Teleman S.: Sur la représentation linéare des groupes topologiques. Ann. Sci. Ecole Norm. Sup. 74 (1957), 319–339. MR 0097458
[56] Tkachenko M.G.: On topologies of free groups. Czechoslovak Math. J. 34 (1984), 541–551. MR 0764436 | Zbl 0584.22001
[57] Uspenskij V.V.: On the group of isometries of the Urysohn universal metric space. Comment. Math. Univ. Carolin. 31 (1990), 181–182. MR 1056185 | Zbl 0699.54011
[58] Uspenskij V.V.: Free topological groups of metrizable spaces. Math. USSR Izvestiya 37 (1991), 657–680. DOI 10.1070/IM1991v037n03ABEH002163 | MR 1098628 | Zbl 0739.22002
[59] Uspenskij V.V.: The epimorphism problem for Hausdorff topological groups. Topology Appl. 57 (1994), 287–294. DOI 10.1016/0166-8641(94)90055-8 | MR 1278029 | Zbl 0810.22002
[60] Warner S.: Topological Fields. North Holland Mathematics Studies, 157, North-Holland-Amsterdam, London, New York, Tokyo, 1993. MR 1002951 | Zbl 0683.12014
Partner of
EuDML logo