Previous |  Up |  Next

Article

Title: Extending the ideal of nowhere dense subsets of rationals to a P-ideal (English)
Author: Filipów, Rafał
Author: Mrożek, Nikodem
Author: Recław, Ireneusz
Author: Szuca, Piotr
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 54
Issue: 3
Year: 2013
Pages: 429-435
Summary lang: English
.
Category: math
.
Summary: We show that the ideal of nowhere dense subsets of rationals cannot be extended to an analytic P-ideal, $F_\sigma$ ideal nor maximal P-ideal. We also consider a problem of extendability to a non-meager P-ideals (in particular, to maximal P-ideals). (English)
Keyword: P-ideal
Keyword: nowhere dense set
Keyword: extension
Keyword: analytic ideal
Keyword: maximal ideal
Keyword: meager ideal
Keyword: ideal convergence
MSC: 40A05
MSC: 40A35
MSC: 54D35
MSC: 54D80
MSC: 54G10
.
Date available: 2013-06-29T06:59:35Z
Last updated: 2015-10-05
Stable URL: http://hdl.handle.net/10338.dmlcz/143311
.
Reference: [1] Debs G., Saint Raymond J.: Filter descriptive classes of Borel functions.Fund. Math. 204 (2009), no. 3, 189–213. Zbl 1179.03046, MR 2520152, 10.4064/fm204-3-1
Reference: [2] Dow A.: The space of minimal prime ideals of $C(\beta N-{\bf N})$ is probably not basically disconnected.General Topology and Applications (Middletown, CT, 1988), Lecture Notes in Pure and Appl. Math., 123, Dekker, New York, 1990, pp. 81–86. MR 1057626
Reference: [3] Filipów R., Mrożek N., Recław I., Szuca P.: Ideal convergence of bounded sequences.J. Symbolic Logic 72 (2007), no. 2, 501–512. Zbl 1123.40002, MR 2320288, 10.2178/jsl/1185803621
Reference: [4] Jalali-Naini S.M.: The monotone subsets of Cantor space, filters and descriptive set theory.PhD Thesis, Oxford, 1976.
Reference: [5] Laczkovich M., Recław I.: Ideal limits of sequences of continuous functions.Fund. Math. 203 (2009), no. 1, 39–46. Zbl 1172.03025, MR 2491780, 10.4064/fm203-1-3
Reference: [6] Laflamme C.: Filter games and combinatorial properties of strategies.Set theory (Boise, ID, 1992–1994), Contemp. Math., 192, Amer. Math. Soc., Providence, RI, 1996, pp. 51–67. Zbl 0854.04004, MR 1367134
Reference: [7] Solecki S.: Analytic ideals and their applications.Ann. Pure Appl. Logic 99 (1999), no. 1-3, 51–72. Zbl 0932.03060, MR 1708146, 10.1016/S0168-0072(98)00051-7
Reference: [8] Talagrand M.: Compacts de fonctions mesurables et filtres non mesurables.Studia Math. 67 (1980), no. 1, 13–43. Zbl 0435.46023, MR 0579439
Reference: [9] van Mill J., Reed G.M. (eds.): Open Problems in Topology.North-Holland Publishing Co., Amsterdam, 1990. Zbl 0877.54001, MR 1078636
Reference: [10] Zapletal J.: Preserving $P$-points in definable forcing.Fund. Math. 204 (2009), no. 2, 145–154. Zbl 1174.03022, MR 2520149, 10.4064/fm204-2-4
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_54-2013-3_9.pdf 224.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo