Title:
|
Extending the ideal of nowhere dense subsets of rationals to a P-ideal (English) |
Author:
|
Filipów, Rafał |
Author:
|
Mrożek, Nikodem |
Author:
|
Recław, Ireneusz |
Author:
|
Szuca, Piotr |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
54 |
Issue:
|
3 |
Year:
|
2013 |
Pages:
|
429-435 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We show that the ideal of nowhere dense subsets of rationals cannot be extended to an analytic P-ideal, $F_\sigma$ ideal nor maximal P-ideal. We also consider a problem of extendability to a non-meager P-ideals (in particular, to maximal P-ideals). (English) |
Keyword:
|
P-ideal |
Keyword:
|
nowhere dense set |
Keyword:
|
extension |
Keyword:
|
analytic ideal |
Keyword:
|
maximal ideal |
Keyword:
|
meager ideal |
Keyword:
|
ideal convergence |
MSC:
|
40A05 |
MSC:
|
40A35 |
MSC:
|
54D35 |
MSC:
|
54D80 |
MSC:
|
54G10 |
. |
Date available:
|
2013-06-29T06:59:35Z |
Last updated:
|
2015-10-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143311 |
. |
Reference:
|
[1] Debs G., Saint Raymond J.: Filter descriptive classes of Borel functions.Fund. Math. 204 (2009), no. 3, 189–213. Zbl 1179.03046, MR 2520152, 10.4064/fm204-3-1 |
Reference:
|
[2] Dow A.: The space of minimal prime ideals of $C(\beta N-{\bf N})$ is probably not basically disconnected.General Topology and Applications (Middletown, CT, 1988), Lecture Notes in Pure and Appl. Math., 123, Dekker, New York, 1990, pp. 81–86. MR 1057626 |
Reference:
|
[3] Filipów R., Mrożek N., Recław I., Szuca P.: Ideal convergence of bounded sequences.J. Symbolic Logic 72 (2007), no. 2, 501–512. Zbl 1123.40002, MR 2320288, 10.2178/jsl/1185803621 |
Reference:
|
[4] Jalali-Naini S.M.: The monotone subsets of Cantor space, filters and descriptive set theory.PhD Thesis, Oxford, 1976. |
Reference:
|
[5] Laczkovich M., Recław I.: Ideal limits of sequences of continuous functions.Fund. Math. 203 (2009), no. 1, 39–46. Zbl 1172.03025, MR 2491780, 10.4064/fm203-1-3 |
Reference:
|
[6] Laflamme C.: Filter games and combinatorial properties of strategies.Set theory (Boise, ID, 1992–1994), Contemp. Math., 192, Amer. Math. Soc., Providence, RI, 1996, pp. 51–67. Zbl 0854.04004, MR 1367134 |
Reference:
|
[7] Solecki S.: Analytic ideals and their applications.Ann. Pure Appl. Logic 99 (1999), no. 1-3, 51–72. Zbl 0932.03060, MR 1708146, 10.1016/S0168-0072(98)00051-7 |
Reference:
|
[8] Talagrand M.: Compacts de fonctions mesurables et filtres non mesurables.Studia Math. 67 (1980), no. 1, 13–43. Zbl 0435.46023, MR 0579439 |
Reference:
|
[9] van Mill J., Reed G.M. (eds.): Open Problems in Topology.North-Holland Publishing Co., Amsterdam, 1990. Zbl 0877.54001, MR 1078636 |
Reference:
|
[10] Zapletal J.: Preserving $P$-points in definable forcing.Fund. Math. 204 (2009), no. 2, 145–154. Zbl 1174.03022, MR 2520149, 10.4064/fm204-2-4 |
. |