Title:
|
A note on the intersection ideal $\mathcal M\cap \mathcal N$ (English) |
Author:
|
Weiss, Tomasz |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
54 |
Issue:
|
3 |
Year:
|
2013 |
Pages:
|
437-445 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove among other theorems that it is consistent with $ZFC$ that there exists a set $X\subseteq 2^\omega$ which is not meager additive, yet it satisfies the following property: for each $F_\sigma$ measure zero set $F$, $X+F$ belongs to the intersection ideal $\mathcal M\cap \mathcal N$. (English) |
Keyword:
|
$F_\sigma$ measure zero sets |
Keyword:
|
intersection ideal $\mathcal M\cap \mathcal N$ |
Keyword:
|
meager additive sets |
Keyword:
|
sets perfectly meager in the transitive sense |
Keyword:
|
$\gamma$-sets |
MSC:
|
03E05 |
MSC:
|
03E17 |
. |
Date available:
|
2013-06-29T07:01:12Z |
Last updated:
|
2015-10-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143312 |
. |
Reference:
|
[1] Bartoszyński T., Judah H.: Set Theory.AK Peters, Wellesley, Massachusetts, 1995. MR 1350295 |
Reference:
|
[2] Bartoszyński T., Recław I.: Not every $\gamma$-set is strongly meager.Contemp. Math., 192, Amer. Math. Soc. Providence, RI, 1996, pp. 25–29. Zbl 0838.03037, MR 1367132, 10.1090/conm/192/02346 |
Reference:
|
[3] Bartoszyński T., Shelah S.: Strongly meager sets of size continuum.Arch. Math. Logic 42 (2003), 769–779. Zbl 1041.03034, MR 2020043, 10.1007/s00153-003-0184-0 |
Reference:
|
[4] Galvin F., Miller A.: $\gamma$-sets and other singular sets of real numbers.Topology Appl. 17 (1984), 145–155. Zbl 0551.54001, MR 0738943, 10.1016/0166-8641(84)90038-5 |
Reference:
|
[5] Kraszewski J.: Everywhere meagre and everywhere null sets.Houston J. Math. 35 (2009), no. 1, 103–111. Zbl 1160.03028, MR 2491870 |
Reference:
|
[6] Miller A.: Special subsets of the real line.in Handbook of Set-Theoretic Topology, edited by K. Kunen and J.E. Vaughan, North-Holland, 1984, pp. 201–233. Zbl 0588.54035, MR 0776624 |
Reference:
|
[7] Nowik A.: Remarks about transitive version of perfectly meager sets.Real Anal. Exchange 22 (1996/97), no. 1, 406–412. MR 1433627 |
Reference:
|
[8] Nowik A., Scheepers M., Weiss T.: The algebraic sum of sets of real numbers with strong measure zero sets.J. Symbolic Logic 63 (1998), 301–324. Zbl 0901.03036, MR 1610427, 10.2307/2586602 |
Reference:
|
[9] Nowik A., Weiss T.: Some remarks on totally imperfect sets.Proc. Amer. Math. Soc. 132 (2004), no. 1, 231–237. Zbl 1041.03035, MR 2021267, 10.1090/S0002-9939-03-06997-1 |
Reference:
|
[10] Pawlikowski J.: A characterization of strong measure zero sets.Israel J. Math. 93 (1996), 171–183. Zbl 0857.28001, MR 1380640, 10.1007/BF02761100 |
Reference:
|
[11] Pawlikowski J., Sabok M.: Two stars.Arch. Math. Logic 47 (2008), no. 7–8, 673–676. Zbl 1152.28003, MR 2448952, 10.1007/s00153-008-0095-1 |
Reference:
|
[12] Zindulka O.: Small sets of reals through the prism of fractal dimensions.preprint, 2010. |
Reference:
|
[13] HASH(0x9e03828): {\it Cohen reals and strong measure zero sets} – MathOverflow.15.\ http://mathoverflow.net/questions/63497/ cohen-reals-and-strong-measure-zero-sets.. |
. |