Previous |  Up |  Next

Article

Title: Estimates for $k$-Hessian operator and some applications (English)
Author: Wan, Dongrui
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 2
Year: 2013
Pages: 547-564
Summary lang: English
.
Category: math
.
Summary: The $k$-convex functions are the viscosity subsolutions to the fully nonlinear elliptic equations $F_{k}[u]=0$, where $F_{k}[u]$ is the elementary symmetric function of order $k$, $1\leq k\leq n$, of the eigenvalues of the Hessian matrix $D^{2}u$. For example, $F_{1}[u]$ is the Laplacian $\Delta u$ and $F_{n}[u]$ is the real Monge-Ampère operator det $D^{2}u$, while $1$-convex functions and $n$-convex functions are subharmonic and convex in the classical sense, respectively. In this paper, we establish an approximation theorem for negative $k$-convex functions, and give several estimates for the mixed $k$-Hessian operator. Applications of these estimates to the $k$-Green functions are also established. (English)
Keyword: $k$-convex function
Keyword: $k$-Hessian operator
Keyword: $k$-Hessian measure
Keyword: $k$-Green function
MSC: 31A05
MSC: 31A15
MSC: 47J20
MSC: 58C35
idZBL: Zbl 06236431
idMR: MR3073978
DOI: 10.1007/s10587-013-0037-x
.
Date available: 2013-07-18T15:10:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143332
.
Reference: [1] Błocki, Z.: Estimates for the complex Monge-Ampère operator.Bull. Pol. Acad. Sci., Math. 41 (1993), 151-157. Zbl 0795.32003, MR 1414762
Reference: [2] Carlehed, M., Cegrell, U., Wikström, F.: Jensen measures, hyperconvexity and boundary behaviour of the pluricomplex Green function.Ann. Pol. Math. 71 (1999), 87-103. Zbl 0955.32034, MR 1684047, 10.4064/ap-71-1-87-103
Reference: [3] Cegrell, U.: The general definition of the complex Monge-Ampère operator.Ann. Inst. Fourier 54 (2004), 159-179. Zbl 1065.32020, MR 2069125, 10.5802/aif.2014
Reference: [4] Cegrell, U., Persson, L.: An energy estimate for the complex Monge-Ampère operator.Ann. Pol. Math. 67 (1997), 95-102. Zbl 0892.32012, MR 1455430, 10.4064/ap-67-1-95-102
Reference: [5] Czyż, R.: Convergence in capacity of the pluricomplex Green function.Zesz. Nauk. Uniw. Jagiell., Univ. Iagell. 1285, Acta Math. 43 (2005), 41-44. Zbl 1109.32029, MR 2331471
Reference: [6] Demailly, J. P.: Monge-Ampère operators, Lelong numbers and intersection theory.Complex Analysis and Geometry Ancona, Vincenzo The University Series in Mathematics, Plenum Press, New York 115-193 (1993). Zbl 0792.32006, MR 1211880
Reference: [7] Gårding, L.: An inequality for hyperbolic polynomials.J. Math. Mech. 8 (1959), 957-965. Zbl 0090.01603, MR 0113978
Reference: [8] Labutin, D. A.: Potential estimates for a class of fully nonlinear elliptic equations.Duke Math. J. 111 (2002), 1-49. Zbl 1100.35036, MR 1876440, 10.1215/S0012-7094-02-11111-9
Reference: [9] Trudinger, N. S., Wang, X. J.: Hessian measures. II.Ann. Math. (2) 150 (1999), 579-604. Zbl 0947.35055, MR 1726702
Reference: [10] Trudinger, N. S., Wang, X. J.: Hessian measures. III.J. Funct. Anal. 193 (2002), 1-23. Zbl 1119.35325, MR 1923626, 10.1006/jfan.2001.3925
Reference: [11] Walsh, J. B.: Continuity of envelopes of plurisubharmonic functions.J. Math. Mech. 18 (1968), 143-148. Zbl 0159.16002, MR 0227465
Reference: [12] Wan, D., Wang, W.: Lelong-Jensen type formula, $k$-Hessian boundary measure and Lelong number for $k$-convex functions.J. Math. Pures Appl. 99 (2013), 635-654. MR 3055211, 10.1016/j.matpur.2012.10.002
Reference: [13] Wikström, F.: Jensen measures and boundary values of plurisubharmonic functions.Ark. Mat. 39 (2001), 181-200. Zbl 1021.32014, MR 1821089, 10.1007/BF02388798
.

Files

Files Size Format View
CzechMathJ_63-2013-2_19.pdf 306.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo