Previous |  Up |  Next

Article

Title: Uniform convergence of double trigonometric series (English)
Author: Kórus, Péter
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 138
Issue: 3
Year: 2013
Pages: 225-243
Summary lang: English
.
Category: math
.
Summary: It is a classical problem in Fourier analysis to give conditions for a single sine or cosine series to be uniformly convergent. Several authors gave conditions for this problem supposing that the coefficients are monotone, non-negative or more recently, general monotone. There are also results for the regular convergence of double sine series to be uniform in case the coefficients are monotone or general monotone double sequences. In this paper we give new sufficient conditions for the uniformity of the regular convergence of sine-cosine and double cosine series, which are necessary as well in case the coefficients are non-negative. The new results also bring necessary and sufficient conditions for the uniform regular convergence of double trigonometric series in complex form. (English)
Keyword: sine series
Keyword: cosine series
Keyword: double sine series
Keyword: sine-cosine series
Keyword: double cosine series
Keyword: uniform convergence
Keyword: regular convergence
Keyword: general monotone sequence
Keyword: general monotone double sequence
Keyword: supremum bounded variation
MSC: 42A20
MSC: 42A32
MSC: 42B99
idZBL: Zbl 06260031
idMR: MR3136495
DOI: 10.21136/MB.2013.143434
.
Date available: 2013-09-14T11:45:06Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143434
.
Reference: [1] Chaundy, T. W., Jolliffe, A. E.: The uniform convergence of a certain class of trigonometrical series.Proc. London Math. Soc. 15 (1916), 214-216. MR 1576557
Reference: [2] Dyachenko, M., Tikhonov, S.: General monotone sequences and convergence of trigonometric series.Topics in Classical Analysis and Applications in Honor of Daniel Waterman. World Scientific Hackensack, NJ L. De Carli et al. (2008), 88-101. Zbl 1167.42303, MR 2569380
Reference: [3] Dyachenko, M., Tikhonov, S.: Integrability and continuity of functions represented by trigonometric series: coefficients criteria.Stud. Math. 193 (2009), 285-306. Zbl 1169.42001, MR 2515585, 10.4064/sm193-3-5
Reference: [4] Kórus, P.: Remarks on the uniform and $L^1$-convergence of trigonometric series.Acta Math. Hung. 128 (2010), 369-380. Zbl 1240.42015, MR 2670995, 10.1007/s10474-010-9217-4
Reference: [5] Kórus, P.: On the uniform convergence of double sine series with generalized monotone coefficients.Period. Math. Hung. 63 (2011), 205-214. Zbl 1265.42007, MR 2853213, 10.1007/s10998-011-8205-y
Reference: [6] Kórus, P., Móricz, F.: On the uniform convergence of double sine series.Stud. Math. 193 (2009), 79-97. Zbl 1167.42002, MR 2506415, 10.4064/sm193-1-4
Reference: [7] Móricz, F.: Some remarks on the notion of regular convergence of multiple series.Acta Math. Hung. 41 (1983), 161-168. MR 0704536, 10.1007/BF01994074
Reference: [8] Tikhonov, S.: Trigonometric series with general monotone coefficients.J. Math. Anal. Appl. 326 (2007), 721-735. Zbl 1141.42004, MR 2277815, 10.1016/j.jmaa.2006.02.053
Reference: [9] Tikhonov, S.: Best approximation and moduli of smoothness: Computation and equivalence theorems.J. Approx. Theory 153 (2008), 19-39. Zbl 1215.42002, MR 2432551, 10.1016/j.jat.2007.05.006
Reference: [10] Zhak, I. E., Shneider, A. A.: Conditions for uniform convergence of double sine series.Russian Izv. Vyssh. Uchebn. Zaved., Mat. 53 (1966), 44-52.
Reference: [11] Zhou, S. P., Zhou, P., Yu, D. S.: Ultimate generalization to monotonicity for uniform convergence of trigonometric series.Sci. China, Math. 53 (2010), 1853-1862. Zbl 1211.42006, MR 2665519, 10.1007/s11425-010-3138-0
.

Files

Files Size Format View
MathBohem_138-2013-3_1.pdf 287.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo