Previous |  Up |  Next

Article

Title: Stability in linear neutral difference equations with variable delays (English)
Author: Ardjouni, Abdelouaheb
Author: Djoudi, Ahcene
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 138
Issue: 3
Year: 2013
Pages: 245-258
Summary lang: English
.
Category: math
.
Summary: In this paper we use the fixed point method to prove asymptotic stability results of the zero solution of a generalized linear neutral difference equation with variable delays. An asymptotic stability theorem with a sufficient condition is proved, which improves and generalizes some results due to Y. N. Raffoul (2006), E. Yankson (2009), M. Islam and E. Yankson (2005). (English)
Keyword: fixed point
Keyword: stability
Keyword: neutral difference equation
Keyword: variable delay
MSC: 39A30
MSC: 39A70
idZBL: Zbl 06260032
idMR: MR3136496
DOI: 10.21136/MB.2013.143436
.
Date available: 2013-09-14T11:46:15Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143436
.
Reference: [1] Ardjouni, A., Djoudi, A.: Fixed points and stability in linear neutral differential equations with variable delays.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 2062-2070. Zbl 1216.34069, MR 2781737, 10.1016/j.na.2010.10.050
Reference: [2] Berezansky, L., Braverman, E.: On exponential dichotomy, Bohl-Perron type theorems and stability of difference equations.J. Math. Anal. Appl. 304 (2005), 511-530. Zbl 1068.39004, MR 2126547, 10.1016/j.jmaa.2004.09.042
Reference: [3] Berezansky, L., Braverman, E., Liz, E.: Sufficient conditions for the global stability of nonautonomous higher order difference equations.J. Difference Equ. Appl. 11 (2005), 785-798. Zbl 1078.39005, MR 2159797, 10.1080/10236190500141050
Reference: [4] Burton, T. A.: Stability by Fixed Point Theory for Functional Differential Equations.Dover Publications, Mineola (2006). Zbl 1160.34001, MR 2281958
Reference: [5] Burton, T. A., Furumochi, T.: Fixed points and problems in stability theory for ordinary and functional differential equations.Dyn. Syst. Appl. 10 (2001), 89-116. Zbl 1021.34042, MR 1844329
Reference: [6] Chatzarakis, G. E., Miliaras, G. N.: Asymptotic behavior in neutral difference equations with variable coefficients and more than one delay arguments.J. Math. Comput. Sci. 1 (2011), 32-52. MR 2913376
Reference: [7] Elaydi, S.: An Introduction to Difference Equations.Undergraduate Texts in Mathematics. Springer, New York (1999). Zbl 0930.39001, MR 1711587
Reference: [8] Elaydi, S.: Periodicity and stability of linear Volterra difference systems.J. Math. Anal. Appl. 181 (1994), 483-492. Zbl 0796.39004, MR 1260872, 10.1006/jmaa.1994.1037
Reference: [9] Elaydi, S., Murakami, S.: Uniform asymptotic stability in linear Volterra difference equations.J. Difference Equ. Appl. 3 (1998), 203-218. Zbl 0891.39013, MR 1616085, 10.1080/10236199808808097
Reference: [10] Eloe, P., Islam, M., Raffoul, Y. N.: Uniform asymptotic stability in nonlinear Volterra discrete systems.Comput. Math. Appl. 45 (2003), 1033-1039. Zbl 1051.39003, MR 2000576, 10.1016/S0898-1221(03)00081-6
Reference: [11] Gyori, I., Hartung, F.: Stability in delay perturbed differential and difference equations.T. Faria Topics in Functional Differential and Difference Equations Papers of the conference on functional differential and difference equations, Lisbon, Portugal, July 26-30, 1999 AMS, Providence. Fields Inst. Commun. {\it 29} (2001), 181-194. Zbl 0990.34066, MR 1821781
Reference: [12] Islam, M., Raffoul, Y. N.: Exponential stability in nonlinear difference equations.J. Difference Equ. Appl. 9 (2003), 819-825. Zbl 1055.39011, MR 1995220, 10.1080/1023619031000101516
Reference: [13] Islam, M., Yankson, E.: Boundedness and stability in nonlinear delay difference equations employing fixed point theory.Electron. J. Qual. Theory Differ. Equ. 2005, electronic only (2005) 18 p. Zbl 1103.39009, MR 2191670
Reference: [14] Kelly, W. G., Peterson, A. C.: Difference Equations: An Introduction with Applications.Academic Press, San Diego (2001). MR 1765695
Reference: [15] Liz, E.: Stability of non-autonomous difference equations: simple ideas leading to useful results.J. Difference Equ. Appl. 17 (2011), 203-220. Zbl 1216.39021, MR 2783344, 10.1080/10236198.2010.549007
Reference: [16] Liz, E.: On explicit conditions for the asymptotic stability of linear higher order difference equations.J. Math. Anal. Appl. 303 (2005), 492-498. Zbl 1068.39017, MR 2122232, 10.1016/j.jmaa.2004.08.048
Reference: [17] Malygina, V. V., Kulikov, A. Y.: On precision of constants in some theorems on stability of difference equations.Func. Differ. Equ. 15 (2008), 239-248. Zbl 1153.39003, MR 2384923
Reference: [18] Pituk, M.: A criterion for the exponential stability of linear difference equations.Appl. Math. Lett. 17 (2004), 779-783. Zbl 1068.39019, MR 2072834, 10.1016/j.aml.2004.06.005
Reference: [19] Raffoul, Y. N.: Stability and periodicity in discrete delay equations.J. Math. Anal. Appl. 324 (2006), 1356-1362. Zbl 1115.39015, MR 2266564, 10.1016/j.jmaa.2006.01.044
Reference: [20] Raffoul, Y. N.: Periodicity in general delay nonlinear difference equations using fixed point theory.J. Difference Equ. Appl. 10 (2004), 1229-1242. Zbl 1068.39021, MR 2100724, 10.1080/10236190410001652847
Reference: [21] Raffoul, Y. N.: General theorems for stability and boundedness for nonlinear functional discrete systems.J. Math. Anal. Appl. 279 (2003), 639-650. Zbl 1022.39004, MR 1974051, 10.1016/S0022-247X(03)00051-9
Reference: [22] Smart, D. R.: Fixed Point Theorems.Cambridge Tracts in Mathematics 66. Cambridge University Press, London (1974). Zbl 0297.47042, MR 0467717
Reference: [23] Yankson, E.: Stability in discrete equations with variable delays Electronic J. Qual. Theory Differ. Equ. 2009, electronic only 2009, 7 p.. MR 2480418
Reference: [24] Yankson, E.: Stability of Volterra difference delay equations.Electronic J. Qual. Theory Differ. Equ. 2006, electronic only (2006), 14 p. Zbl 1113.39013, MR 2263079
Reference: [25] Zhang, B.: Fixed points and stability in differential equations with variable delays.Nonlinear Anal., Theory Methods Appl. 63 (2005), e233--e242. Zbl 1159.34348, 10.1016/j.na.2005.02.081
Reference: [26] Zhang, B. G., Tian, C. J., Wong, P. J. Y.: Global attractivity of difference equations with variable delay.Dyn. Contin. Discrete Impulsive Syst. 6 (1999), 307-317. Zbl 0938.39016, MR 1708451
.

Files

Files Size Format View
MathBohem_138-2013-3_2.pdf 252.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo