Previous |  Up |  Next

Article

Title: On the Kolář connection (English)
Author: Mikulski, Włodzimierz M.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 49
Issue: 4
Year: 2013
Pages: 223-240
Summary lang: English
.
Category: math
.
Summary: Let $Y\rightarrow M$ be a fibred manifold with $m$-dimensional base and $n$-dimensional fibres and $E\rightarrow M$ be a vector bundle with the same base $M$ and with $n$-dimensional fibres (the same $n$). If $m\ge 2$ and $n\ge 3$, we classify all canonical constructions of a classical linear connection $A(\Gamma ,\Lambda ,\Phi ,\Delta )$ on $Y$ from a system $(\Gamma ,\Lambda ,\Phi ,\Delta )$ consisting of a general connection $\Gamma $ on $Y\rightarrow M$, a torsion free classical linear connection $\Lambda $ on $M$, a vertical parallelism $\Phi \colon Y\times _ME\rightarrow VY$ on $Y$ and a linear connection $\Delta $ on $E\rightarrow M$. An example of such $A(\Gamma ,\Lambda ,\Phi ,\Delta )$ is the connection $(\Gamma ,\Lambda ,\Phi ,\Delta )$ by I. Kolář. (English)
Keyword: general connection
Keyword: linear connection
Keyword: classical linear connection
Keyword: vertical parallelism
Keyword: natural operators
MSC: 53C05
MSC: 58A32
idZBL: Zbl 1299.53071
idMR: MR3159312
DOI: 10.5817/AM2013-4-223
.
Date available: 2014-01-16T11:13:05Z
Last updated: 2015-09-09
Stable URL: http://hdl.handle.net/10338.dmlcz/143548
.
Related article: http://dml.cz/handle/10338.dmlcz/144429
.
Reference: [1] Doupovec, M., Mikulski, W. M.: Reduction theorems for principal and classical connections.Acta Math. Sinica 26 (1) (2010), 169–184. Zbl 1186.53036, MR 2584996, 10.1007/s10114-010-7333-2
Reference: [2] Gancarzewicz, J.: Horizontal lifts of linear connections to the natural vector bundles.Differential geometry (Santiago de Compostela, 1984), vol. 131, Pitman, Boston, MA, 1985, pp. 318–341.
Reference: [3] Janyška, J., Vondra, J.: Natural principal connections on the principal gauge prolongation of a principal bundle.Rep. Math. Phys. 64 (3) (2009), 395–415. Zbl 1195.53040, MR 2602937, 10.1016/S0034-4877(10)00002-9
Reference: [4] Kolář, I.: Induced connections on total spaces of fibred bundles.Int. J. Geom. Methods Mod. Phys. (2010), 705–711. MR 2669064, 10.1142/S021988781000452X
Reference: [5] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry.Springer Verlag, 1993.
.

Files

Files Size Format View
ArchMathRetro_049-2013-4_2.pdf 530.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo