Previous |  Up |  Next


general connection; linear connection; classical linear connection; vertical parallelism; natural operators
Let $Y\rightarrow M$ be a fibred manifold with $m$-dimensional base and $n$-dimensional fibres and $E\rightarrow M$ be a vector bundle with the same base $M$ and with $n$-dimensional fibres (the same $n$). If $m\ge 2$ and $n\ge 3$, we classify all canonical constructions of a classical linear connection $A(\Gamma ,\Lambda ,\Phi ,\Delta )$ on $Y$ from a system $(\Gamma ,\Lambda ,\Phi ,\Delta )$ consisting of a general connection $\Gamma $ on $Y\rightarrow M$, a torsion free classical linear connection $\Lambda $ on $M$, a vertical parallelism $\Phi \colon Y\times _ME\rightarrow VY$ on $Y$ and a linear connection $\Delta $ on $E\rightarrow M$. An example of such $A(\Gamma ,\Lambda ,\Phi ,\Delta )$ is the connection $(\Gamma ,\Lambda ,\Phi ,\Delta )$ by I. Kolář.
[1] Doupovec, M., Mikulski, W. M.: Reduction theorems for principal and classical connections. Acta Math. Sinica 26 (1) (2010), 169–184. DOI 10.1007/s10114-010-7333-2 | MR 2584996 | Zbl 1186.53036
[2] Gancarzewicz, J.: Horizontal lifts of linear connections to the natural vector bundles. Differential geometry (Santiago de Compostela, 1984), vol. 131, Pitman, Boston, MA, 1985, pp. 318–341.
[3] Janyška, J., Vondra, J.: Natural principal connections on the principal gauge prolongation of a principal bundle. Rep. Math. Phys. 64 (3) (2009), 395–415. DOI 10.1016/S0034-4877(10)00002-9 | MR 2602937 | Zbl 1195.53040
[4] Kolář, I.: Induced connections on total spaces of fibred bundles. Int. J. Geom. Methods Mod. Phys. (2010), 705–711. DOI 10.1142/S021988781000452X | MR 2669064
[5] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer Verlag, 1993.
Partner of
EuDML logo