Title:
|
When every flat ideal is projective (English) |
Author:
|
Cheniour, Fatima |
Author:
|
Mahdou, Najib |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
55 |
Issue:
|
1 |
Year:
|
2014 |
Pages:
|
1-7 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we study the class of
rings in which every flat ideal is
projective. We investigate the stability
of this property under homomorphic image,
and its transfer to various contexts
of constructions such as direct products,
and trivial ring extensions. Our results
generate examples which enrich the
current literature with new and original
families of rings that satisfy this
property. (English) |
Keyword:
|
FP-ring |
Keyword:
|
direct product |
Keyword:
|
homomorphic image |
Keyword:
|
amalgamation of rings |
Keyword:
|
$A\bowtie^{f}J $ |
Keyword:
|
trivial extension |
MSC:
|
13D02 |
MSC:
|
13D05 |
idZBL:
|
Zbl 06383780 |
idMR:
|
MR3160821 |
. |
Date available:
|
2014-01-17T09:30:17Z |
Last updated:
|
2016-04-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143561 |
. |
Reference:
|
[1] Ali M.M.: Idealization and Theorems of D.D. Anderson II.Comm. Algebra 35 (2007), 2767–2792. Zbl 1136.13007, MR 2356298, 10.1080/00927870701353852 |
Reference:
|
[2] Anderson D.D., Winders M.: Idealization of a module.J. Commut. Algebra 1 (2009), no. 1, 3–56. Zbl 1194.13002, MR 2462381, 10.1216/JCA-2009-1-1-3 |
Reference:
|
[3] Bakkari C., Kabbaj S., Mahdou N.: Trivial extensions defined by Prüfer conditions.J. Pure Appl. Algebra 214 (2010), 53–60. Zbl 1175.13008, MR 2561766, 10.1016/j.jpaa.2009.04.011 |
Reference:
|
[4] Bazzoni S., Glaz S.: Gaussian properties of total rings of quotients.J. Algebra 310 (2007), 180–193. Zbl 1118.13020, MR 2307788, 10.1016/j.jalgebra.2007.01.004 |
Reference:
|
[5] Bourbaki N.: Algèbre commutative, Chapitre 10.Masson, Paris, 1989. Zbl 1107.13002, MR 2272929 |
Reference:
|
[6] Costa D.L.: Parameterizing families of non-Noetherian rings.Comm. Algebra 22 (1994), 3997–4011. Zbl 0814.13010, MR 1280104, 10.1080/00927879408825061 |
Reference:
|
[7] Couchot F.: Flat modules over valuation rings.J. Pure Appl. Algebra 211 (2007), 235–247. Zbl 1123.13016, MR 2333769, 10.1016/j.jpaa.2007.01.010 |
Reference:
|
[8] D'Anna M.: A construction of Gorenstein rings.J. Algebra 306 (2006), 507–519. Zbl 1120.13022, MR 2271349, 10.1016/j.jalgebra.2005.12.023 |
Reference:
|
[9] D'Anna M., Fontana M.: An amalgamated duplication of a ring along an ideal: the basic properties.J. Algebra Appl. 6 (2007), 443–459. Zbl 1126.13002, MR 2337762, 10.1142/S0219498807002326 |
Reference:
|
[10] D'Anna M., Fontana M.: An amalgamated duplication of a ring along a multiplicative-canonical ideal.Arkiv Mat. 45 (2007), 241–252. MR 2342602, 10.1007/s11512-006-0038-1 |
Reference:
|
[11] D'Anna M., Finacchiaro C.A., Fontana M.: Properties of chains of prime ideals in amalgamated algebra along an ideal.J. Pure Appl. Algebra 214 (2010), 1633–1641. MR 2593689, 10.1016/j.jpaa.2009.12.008 |
Reference:
|
[12] El Baghdadi S., Jhilal A., Mahdou N.: On FF-rings.J. Pure Appl. Algebra 216 (2012), 71–76. Zbl 1239.13002, MR 2826419, 10.1016/j.jpaa.2011.05.003 |
Reference:
|
[13] Fadden C.M., Greferath M., Zumbrägel J.: Characteristics of Invariant Weights Related to Code Equivalence over Rings.inria-00607730, version 1–11 Jul 2011. Zbl 1259.94068 |
Reference:
|
[14] Glaz S.: Prüfer Conditions in Rings with Zero-Divisors.Lecture Notes Pure Appl. Math., 241, Chapman & Hall/CRC, Boca Raton, FL, 2005, pp. 272–281. Zbl 1107.13023, MR 2140700, 10.1201/9781420028249.ch17 |
Reference:
|
[15] Glaz S.: Commutative Coherent Rings.Lecture Notes in Mathematics, 1371, Springer, Berlin, 1989. Zbl 0787.13001, MR 0999133 |
Reference:
|
[16] Glaz S.: Controlling the Zero Divisors of a Commutative Rings.Lecture Notes in Pure and Applied Mathematics, 231, Marcel Dekker, New York, 2003, pp. 191–212. MR 2029827 |
Reference:
|
[17] Huckaba J.A.: Commutative Rings with Zero Divizors.Marcel Dekker, New York-Basel, 1988. MR 0938741 |
Reference:
|
[18] Kabbaj S., Mahdou N.: Trivial extensions defined by coherent-like conditions.Comm. Algebra 32 (2004), no. 10, 3937–3953. Zbl 1068.13002, MR 2097439, 10.1081/AGB-200027791 |
Reference:
|
[19] Mahdou N.: On Costa-conjecture.Comm. Algebra 29 (2001), 2775–2785. MR 1848381, 10.1081/AGB-100104986 |
Reference:
|
[20] Mahdou N.: On $2$-von Neumann regular rings.Comm. Algebra 33 (2005), 3489–3496. Zbl 1080.13004, MR 2175447, 10.1080/00927870500242991 |
Reference:
|
[21] Mahdou N., Mouanis H.: Some homological properties of subrings retract and applications to fixed rings.Comm. Algebra 32 (2004), no. 5, 1823–1834. MR 2099703, 10.1081/AGB-120029904 |
Reference:
|
[22] Nagata M.: Local Rings.Interscience, New York, 1962. Zbl 0386.13010, MR 0155856 |
Reference:
|
[23] Rotman J.J.: An Introduction to Homological Algebra.Academic Press, New York, 1979. Zbl 1157.18001, MR 0538169 |
Reference:
|
[24] Sally J.D., Vasconcelos W.V.: Flat ideal I.Comm. Algebra 3 (1975), 531–543. MR 0379466, 10.1080/00927877508822059 |
Reference:
|
[25] Zafruallah M.: Flatness and invertibility of an ideal.Comm. Algebra 18 (1990), 2151–2158. MR 1063129, 10.1080/00927879008824014 |
. |