Previous |  Up |  Next

Article

Title: When every flat ideal is projective (English)
Author: Cheniour, Fatima
Author: Mahdou, Najib
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 1
Year: 2014
Pages: 1-7
Summary lang: English
.
Category: math
.
Summary: In this paper, we study the class of rings in which every flat ideal is projective. We investigate the stability of this property under homomorphic image, and its transfer to various contexts of constructions such as direct products, and trivial ring extensions. Our results generate examples which enrich the current literature with new and original families of rings that satisfy this property. (English)
Keyword: FP-ring
Keyword: direct product
Keyword: homomorphic image
Keyword: amalgamation of rings
Keyword: $A\bowtie^{f}J $
Keyword: trivial extension
MSC: 13D02
MSC: 13D05
idZBL: Zbl 06383780
idMR: MR3160821
.
Date available: 2014-01-17T09:30:17Z
Last updated: 2016-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/143561
.
Reference: [1] Ali M.M.: Idealization and Theorems of D.D. Anderson II.Comm. Algebra 35 (2007), 2767–2792. Zbl 1136.13007, MR 2356298, 10.1080/00927870701353852
Reference: [2] Anderson D.D., Winders M.: Idealization of a module.J. Commut. Algebra 1 (2009), no. 1, 3–56. Zbl 1194.13002, MR 2462381, 10.1216/JCA-2009-1-1-3
Reference: [3] Bakkari C., Kabbaj S., Mahdou N.: Trivial extensions defined by Prüfer conditions.J. Pure Appl. Algebra 214 (2010), 53–60. Zbl 1175.13008, MR 2561766, 10.1016/j.jpaa.2009.04.011
Reference: [4] Bazzoni S., Glaz S.: Gaussian properties of total rings of quotients.J. Algebra 310 (2007), 180–193. Zbl 1118.13020, MR 2307788, 10.1016/j.jalgebra.2007.01.004
Reference: [5] Bourbaki N.: Algèbre commutative, Chapitre 10.Masson, Paris, 1989. Zbl 1107.13002, MR 2272929
Reference: [6] Costa D.L.: Parameterizing families of non-Noetherian rings.Comm. Algebra 22 (1994), 3997–4011. Zbl 0814.13010, MR 1280104, 10.1080/00927879408825061
Reference: [7] Couchot F.: Flat modules over valuation rings.J. Pure Appl. Algebra 211 (2007), 235–247. Zbl 1123.13016, MR 2333769, 10.1016/j.jpaa.2007.01.010
Reference: [8] D'Anna M.: A construction of Gorenstein rings.J. Algebra 306 (2006), 507–519. Zbl 1120.13022, MR 2271349, 10.1016/j.jalgebra.2005.12.023
Reference: [9] D'Anna M., Fontana M.: An amalgamated duplication of a ring along an ideal: the basic properties.J. Algebra Appl. 6 (2007), 443–459. Zbl 1126.13002, MR 2337762, 10.1142/S0219498807002326
Reference: [10] D'Anna M., Fontana M.: An amalgamated duplication of a ring along a multiplicative-canonical ideal.Arkiv Mat. 45 (2007), 241–252. MR 2342602, 10.1007/s11512-006-0038-1
Reference: [11] D'Anna M., Finacchiaro C.A., Fontana M.: Properties of chains of prime ideals in amalgamated algebra along an ideal.J. Pure Appl. Algebra 214 (2010), 1633–1641. MR 2593689, 10.1016/j.jpaa.2009.12.008
Reference: [12] El Baghdadi S., Jhilal A., Mahdou N.: On FF-rings.J. Pure Appl. Algebra 216 (2012), 71–76. Zbl 1239.13002, MR 2826419, 10.1016/j.jpaa.2011.05.003
Reference: [13] Fadden C.M., Greferath M., Zumbrägel J.: Characteristics of Invariant Weights Related to Code Equivalence over Rings.inria-00607730, version 1–11 Jul 2011. Zbl 1259.94068
Reference: [14] Glaz S.: Prüfer Conditions in Rings with Zero-Divisors.Lecture Notes Pure Appl. Math., 241, Chapman & Hall/CRC, Boca Raton, FL, 2005, pp. 272–281. Zbl 1107.13023, MR 2140700, 10.1201/9781420028249.ch17
Reference: [15] Glaz S.: Commutative Coherent Rings.Lecture Notes in Mathematics, 1371, Springer, Berlin, 1989. Zbl 0787.13001, MR 0999133
Reference: [16] Glaz S.: Controlling the Zero Divisors of a Commutative Rings.Lecture Notes in Pure and Applied Mathematics, 231, Marcel Dekker, New York, 2003, pp. 191–212. MR 2029827
Reference: [17] Huckaba J.A.: Commutative Rings with Zero Divizors.Marcel Dekker, New York-Basel, 1988. MR 0938741
Reference: [18] Kabbaj S., Mahdou N.: Trivial extensions defined by coherent-like conditions.Comm. Algebra 32 (2004), no. 10, 3937–3953. Zbl 1068.13002, MR 2097439, 10.1081/AGB-200027791
Reference: [19] Mahdou N.: On Costa-conjecture.Comm. Algebra 29 (2001), 2775–2785. MR 1848381, 10.1081/AGB-100104986
Reference: [20] Mahdou N.: On $2$-von Neumann regular rings.Comm. Algebra 33 (2005), 3489–3496. Zbl 1080.13004, MR 2175447, 10.1080/00927870500242991
Reference: [21] Mahdou N., Mouanis H.: Some homological properties of subrings retract and applications to fixed rings.Comm. Algebra 32 (2004), no. 5, 1823–1834. MR 2099703, 10.1081/AGB-120029904
Reference: [22] Nagata M.: Local Rings.Interscience, New York, 1962. Zbl 0386.13010, MR 0155856
Reference: [23] Rotman J.J.: An Introduction to Homological Algebra.Academic Press, New York, 1979. Zbl 1157.18001, MR 0538169
Reference: [24] Sally J.D., Vasconcelos W.V.: Flat ideal I.Comm. Algebra 3 (1975), 531–543. MR 0379466, 10.1080/00927877508822059
Reference: [25] Zafruallah M.: Flatness and invertibility of an ideal.Comm. Algebra 18 (1990), 2151–2158. MR 1063129, 10.1080/00927879008824014
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-1_1.pdf 206.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo