Title:
|
Products of small modules (English) |
Author:
|
Kálnai, Peter |
Author:
|
Žemlička, Jan |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
55 |
Issue:
|
1 |
Year:
|
2014 |
Pages:
|
9-16 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Module is said to be small if it is not
a union of strictly increasing infinite
countable chain of submodules. We show
that the class of all small modules
over self-injective purely infinite
ring is closed under direct products
whenever there exists no strongly
inaccessible cardinal. (English) |
Keyword:
|
small module |
Keyword:
|
self-injectivity |
Keyword:
|
von Neumann regular ring |
Keyword:
|
purely infinite rings |
Keyword:
|
direct sums |
Keyword:
|
direct products |
Keyword:
|
strongly inaccessible cardinals |
MSC:
|
03E35 |
MSC:
|
16B70 |
MSC:
|
16D10 |
MSC:
|
16D50 |
MSC:
|
16D70 |
MSC:
|
16D80 |
MSC:
|
16E50 |
MSC:
|
16S50 |
idZBL:
|
Zbl 06383781 |
idMR:
|
MR3160822 |
. |
Date available:
|
2014-01-17T09:31:11Z |
Last updated:
|
2016-04-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143564 |
. |
Reference:
|
[1] Eklof P.C., Goodearl K.R., Trlifaj J.: Dually slender modules and steady rings.Forum Math. 9 (1997), 61–74. Zbl 0866.16003, MR 1426454, 10.1515/form.1997.9.61 |
Reference:
|
[2] El Bashir R., Kepka T., Němec P.: Modules commuting (via Hom) with some colimits.Czechoslovak Math. J. 53 (2003), 891–905. Zbl 1080.16504, MR 2018837, 10.1023/B:CMAJ.0000024528.13249.45 |
Reference:
|
[3] Goodearl K.R.: Von Neumann Regular Rings.Pitman, London, 1979, Second Ed. Melbourne, FL 1991, Krieger. Zbl 0841.16008, MR 0533669 |
Reference:
|
[4] Kunen K.: Set Theory: An Introduction to Independence Proofs.North Holland, Amsterdam, 1980. Zbl 0534.03026, MR 0597342 |
Reference:
|
[5] Rentschler R.: Sur les modules $M$ tels que $Hom(M,-)$ commute avec les sommes directes.C.R. Acad. Sci. Paris 268 (1969), 930–933. Zbl 0179.06102, MR 0241466 |
Reference:
|
[6] Růžička P., Trlifaj J., Žemlička J.: Criteria of steadiness.Abelian Groups, Module Theory, and Topology, Marcel Dekker, New York, 1998, pp. 359–372. Zbl 0917.16004, MR 1651181 |
Reference:
|
[7] Stenström B.: Rings of Quotients.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 217, Springer, New York-Heidelberg, 1975. MR 0389953 |
Reference:
|
[8] Trlifaj J.: Almost $\ast$-modules need not be finitely generated.Comm. Algebra 21 (1993), 2453–2462. MR 1218507, 10.1080/00927879308824686 |
Reference:
|
[9] Trlifaj J.: Steady rings may contain large sets of orthogonal idempotents.Proc. Conf. Abelian Groups and Modules (Padova 1994), Kluwer, Dordrecht, 1995, pp. 467–473. Zbl 0845.16009, MR 1378220 |
Reference:
|
[10] Zelenyuk E.G.: Ultrafilters and topologies on groups.de Gruyter Expositions in Mathematics, 50, de Gruyter, Berlin, 2011. Zbl 1215.22001, MR 2768144 |
Reference:
|
[11] Žemlička J.: Steadiness is tested by a single module.Contemporary Mathematics 273 (2001), 301–308. Zbl 0988.16003, MR 1817172, 10.1090/conm/273/04444 |
Reference:
|
[12] Žemlička J.: Classes of dually slender modules.Proceedings of the Algebra Symposium, Cluj, 2005, Editura Efes, Cluj-Napoca, 2006, pp. 129–137. Zbl 1152.16004, MR 2338602 |
Reference:
|
[13] Žemlička J., and Trlifaj J.: Steady ideals and rings.Rend. Sem. Mat. Univ. Padova 98 (1997), 161–172. MR 1492975 |
. |