Previous |  Up |  Next

Article

Title: Products of small modules (English)
Author: Kálnai, Peter
Author: Žemlička, Jan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 1
Year: 2014
Pages: 9-16
Summary lang: English
.
Category: math
.
Summary: Module is said to be small if it is not a union of strictly increasing infinite countable chain of submodules. We show that the class of all small modules over self-injective purely infinite ring is closed under direct products whenever there exists no strongly inaccessible cardinal. (English)
Keyword: small module
Keyword: self-injectivity
Keyword: von Neumann regular ring
Keyword: purely infinite rings
Keyword: direct sums
Keyword: direct products
Keyword: strongly inaccessible cardinals
MSC: 03E35
MSC: 16B70
MSC: 16D10
MSC: 16D50
MSC: 16D70
MSC: 16D80
MSC: 16E50
MSC: 16S50
idZBL: Zbl 06383781
idMR: MR3160822
.
Date available: 2014-01-17T09:31:11Z
Last updated: 2016-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/143564
.
Reference: [1] Eklof P.C., Goodearl K.R., Trlifaj J.: Dually slender modules and steady rings.Forum Math. 9 (1997), 61–74. Zbl 0866.16003, MR 1426454, 10.1515/form.1997.9.61
Reference: [2] El Bashir R., Kepka T., Němec P.: Modules commuting (via Hom) with some colimits.Czechoslovak Math. J. 53 (2003), 891–905. Zbl 1080.16504, MR 2018837, 10.1023/B:CMAJ.0000024528.13249.45
Reference: [3] Goodearl K.R.: Von Neumann Regular Rings.Pitman, London, 1979, Second Ed. Melbourne, FL 1991, Krieger. Zbl 0841.16008, MR 0533669
Reference: [4] Kunen K.: Set Theory: An Introduction to Independence Proofs.North Holland, Amsterdam, 1980. Zbl 0534.03026, MR 0597342
Reference: [5] Rentschler R.: Sur les modules $M$ tels que $Hom(M,-)$ commute avec les sommes directes.C.R. Acad. Sci. Paris 268 (1969), 930–933. Zbl 0179.06102, MR 0241466
Reference: [6] Růžička P., Trlifaj J., Žemlička J.: Criteria of steadiness.Abelian Groups, Module Theory, and Topology, Marcel Dekker, New York, 1998, pp. 359–372. Zbl 0917.16004, MR 1651181
Reference: [7] Stenström B.: Rings of Quotients.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 217, Springer, New York-Heidelberg, 1975. MR 0389953
Reference: [8] Trlifaj J.: Almost $\ast$-modules need not be finitely generated.Comm. Algebra 21 (1993), 2453–2462. MR 1218507, 10.1080/00927879308824686
Reference: [9] Trlifaj J.: Steady rings may contain large sets of orthogonal idempotents.Proc. Conf. Abelian Groups and Modules (Padova 1994), Kluwer, Dordrecht, 1995, pp. 467–473. Zbl 0845.16009, MR 1378220
Reference: [10] Zelenyuk E.G.: Ultrafilters and topologies on groups.de Gruyter Expositions in Mathematics, 50, de Gruyter, Berlin, 2011. Zbl 1215.22001, MR 2768144
Reference: [11] Žemlička J.: Steadiness is tested by a single module.Contemporary Mathematics 273 (2001), 301–308. Zbl 0988.16003, MR 1817172, 10.1090/conm/273/04444
Reference: [12] Žemlička J.: Classes of dually slender modules.Proceedings of the Algebra Symposium, Cluj, 2005, Editura Efes, Cluj-Napoca, 2006, pp. 129–137. Zbl 1152.16004, MR 2338602
Reference: [13] Žemlička J., and Trlifaj J.: Steady ideals and rings.Rend. Sem. Mat. Univ. Padova 98 (1997), 161–172. MR 1492975
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-1_2.pdf 223.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo