Previous |  Up |  Next

Article

Title: Noncommutative Valdivia compacta (English)
Author: Cúth, Marek
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 1
Year: 2014
Pages: 53-72
Summary lang: English
.
Category: math
.
Summary: We prove some generalizations of results concerning Valdivia compact spaces (equivalently spaces with a commutative retractional skeleton) to the spaces with a retractional skeleton (not necessarily commutative). Namely, we show that the dual unit ball of a Banach space is Corson provided the dual unit ball of every equivalent norm has a retractional skeleton. Another result to be mentioned is the following. Having a compact space $K$, we show that $K$ is Corson if and only if every continuous image of $K$ has a retractional skeleton. We also present some open problems in this area. (English)
Keyword: retractional skeleton
Keyword: projectional skeleton
Keyword: Valdivia compacta
Keyword: Plichko spaces
MSC: 46B26
MSC: 54D30
idZBL: Zbl 06383785
idMR: MR3160826
.
Date available: 2014-01-17T09:34:40Z
Last updated: 2016-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/143568
.
Reference: [1] Cúth M.: Separable reduction theorems by the method of elementary submodels.Fund. Math. 219 (2012), 191–222. Zbl 1270.46015, MR 3001239, 10.4064/fm219-3-1
Reference: [2] Cúth M.: Simultaneous projectional skeletons.J. Math. Anal. Appl. 411 (2014), 19–29; DOI: 10.1016/j.jmaa.2013.09.020. MR 3118464, 10.1016/j.jmaa.2013.09.020
Reference: [3] Deville R., Godefroy G., Zizler V.: Smoothness and Renormings in Banach Spaces.Pitman Monographs and Surveys in Pure and Applied Mathematics, 64, Longman Scientific and Technical, New York, 1993. Zbl 0782.46019, MR 1211634
Reference: [4] Engelking R.: General Topology.revised and completed edition, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [5] Hájek P., Montesinos V., Vanderwerff J., Zizler V.: Biorthogonal Systems in Banach Spaces.CMS Books in Mathematics, 26, Springer, New York, 2008. Zbl 1136.46001, MR 2359536
Reference: [6] Kalenda O.: Valdivia compacta and subspaces of $\mathcal C (K)$ spaces.Extracta Math. 14 (1999), no. 3, 355–371. MR 1759476
Reference: [7] Kalenda O.: Continuous images and other topological properties of Valdivia compacta.Fund. Math. 162 (1999), no. 2, 181–192. Zbl 0989.54019, MR 1734916
Reference: [8] Kalenda O.: Embedding the ordinal segment $[0,\omega_1]$ into continuous images of Valdivia compacta.Comment. Math. Univ. Carolin. 40 (1999), no. 4, 777–783. MR 1756552
Reference: [9] Kalenda O.: Valdivia compacta and equivalent norms.Studia Math. 138 (2000), 179–191. Zbl 1073.46009, MR 1749079
Reference: [10] Kalenda O.: A characterization of Valdivia compact spaces.Collect. Math. 51 (2000), no. 1, 59–81. Zbl 0949.46004, MR 1757850
Reference: [11] Kalenda O., :: Valdivia compact spaces in topology and Banach space theory.Extracta Math. 15 (2000), no. 1, 1–85. MR 1792980
Reference: [12] Kalenda O.F.K.: M-bases in spaces of continuous functions on ordinals.Colloq. Math. 92 (2002), no. 2, 179–187. Zbl 1029.46006, MR 1899436, 10.4064/cm92-2-3
Reference: [13] Kubiś W., Michalewski H.: Small Valdivia compact spaces.Topology Appl. 153 (2006), 2560–2573. Zbl 1138.54024, MR 2243734, 10.1016/j.topol.2005.09.010
Reference: [14] Banakh T., Kubiś W.: Spaces of continuous functions over Dugundji compacta.preprint, arXiv:math/0610795v2, 2008.
Reference: [15] Kubiś W.: Banach spaces with projectional skeletons.J. Math. Anal. Appl. 350 (2009), no. 2, 758–776. Zbl 1166.46008, MR 2474810, 10.1016/j.jmaa.2008.07.006
Reference: [16] Kakol J., Kubiś W., López-Pellicer M.: Descriptive Topology in Selected Topics of Functional Analysis Developments in Mathematics.Developments in Mathematics, 24, Springer, New York, 2011. MR 2953769, 10.1007/978-1-4614-0529-0
Reference: [17] Kunen K.: Set Theory.Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing Co., Amsterdam, 1983. Zbl 0960.03033, MR 0756630
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-1_6.pdf 324.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo