Title:
|
Noncommutative Valdivia compacta (English) |
Author:
|
Cúth, Marek |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
55 |
Issue:
|
1 |
Year:
|
2014 |
Pages:
|
53-72 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove some generalizations of results
concerning Valdivia compact spaces
(equivalently spaces with a commutative
retractional skeleton) to the spaces
with a retractional skeleton
(not necessarily commutative).
Namely, we show that the dual unit ball
of a Banach space is Corson provided
the dual unit ball of every equivalent
norm has a retractional skeleton.
Another result to be mentioned is the
following. Having a compact space $K$,
we show that $K$ is Corson if and only
if every continuous image of $K$ has
a retractional skeleton. We also present
some open problems in this area. (English) |
Keyword:
|
retractional skeleton |
Keyword:
|
projectional skeleton |
Keyword:
|
Valdivia compacta |
Keyword:
|
Plichko spaces |
MSC:
|
46B26 |
MSC:
|
54D30 |
idZBL:
|
Zbl 06383785 |
idMR:
|
MR3160826 |
. |
Date available:
|
2014-01-17T09:34:40Z |
Last updated:
|
2016-04-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143568 |
. |
Reference:
|
[1] Cúth M.: Separable reduction theorems by the method of elementary submodels.Fund. Math. 219 (2012), 191–222. Zbl 1270.46015, MR 3001239, 10.4064/fm219-3-1 |
Reference:
|
[2] Cúth M.: Simultaneous projectional skeletons.J. Math. Anal. Appl. 411 (2014), 19–29; DOI: 10.1016/j.jmaa.2013.09.020. MR 3118464, 10.1016/j.jmaa.2013.09.020 |
Reference:
|
[3] Deville R., Godefroy G., Zizler V.: Smoothness and Renormings in Banach Spaces.Pitman Monographs and Surveys in Pure and Applied Mathematics, 64, Longman Scientific and Technical, New York, 1993. Zbl 0782.46019, MR 1211634 |
Reference:
|
[4] Engelking R.: General Topology.revised and completed edition, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[5] Hájek P., Montesinos V., Vanderwerff J., Zizler V.: Biorthogonal Systems in Banach Spaces.CMS Books in Mathematics, 26, Springer, New York, 2008. Zbl 1136.46001, MR 2359536 |
Reference:
|
[6] Kalenda O.: Valdivia compacta and subspaces of $\mathcal C (K)$ spaces.Extracta Math. 14 (1999), no. 3, 355–371. MR 1759476 |
Reference:
|
[7] Kalenda O.: Continuous images and other topological properties of Valdivia compacta.Fund. Math. 162 (1999), no. 2, 181–192. Zbl 0989.54019, MR 1734916 |
Reference:
|
[8] Kalenda O.: Embedding the ordinal segment $[0,\omega_1]$ into continuous images of Valdivia compacta.Comment. Math. Univ. Carolin. 40 (1999), no. 4, 777–783. MR 1756552 |
Reference:
|
[9] Kalenda O.: Valdivia compacta and equivalent norms.Studia Math. 138 (2000), 179–191. Zbl 1073.46009, MR 1749079 |
Reference:
|
[10] Kalenda O.: A characterization of Valdivia compact spaces.Collect. Math. 51 (2000), no. 1, 59–81. Zbl 0949.46004, MR 1757850 |
Reference:
|
[11] Kalenda O., :: Valdivia compact spaces in topology and Banach space theory.Extracta Math. 15 (2000), no. 1, 1–85. MR 1792980 |
Reference:
|
[12] Kalenda O.F.K.: M-bases in spaces of continuous functions on ordinals.Colloq. Math. 92 (2002), no. 2, 179–187. Zbl 1029.46006, MR 1899436, 10.4064/cm92-2-3 |
Reference:
|
[13] Kubiś W., Michalewski H.: Small Valdivia compact spaces.Topology Appl. 153 (2006), 2560–2573. Zbl 1138.54024, MR 2243734, 10.1016/j.topol.2005.09.010 |
Reference:
|
[14] Banakh T., Kubiś W.: Spaces of continuous functions over Dugundji compacta.preprint, arXiv:math/0610795v2, 2008. |
Reference:
|
[15] Kubiś W.: Banach spaces with projectional skeletons.J. Math. Anal. Appl. 350 (2009), no. 2, 758–776. Zbl 1166.46008, MR 2474810, 10.1016/j.jmaa.2008.07.006 |
Reference:
|
[16] Kakol J., Kubiś W., López-Pellicer M.: Descriptive Topology in Selected Topics of Functional Analysis Developments in Mathematics.Developments in Mathematics, 24, Springer, New York, 2011. MR 2953769, 10.1007/978-1-4614-0529-0 |
Reference:
|
[17] Kunen K.: Set Theory.Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing Co., Amsterdam, 1983. Zbl 0960.03033, MR 0756630 |
. |