Previous |  Up |  Next

Article

Title: Some evolution equations under the List's flow and their applications (English)
Author: Ma, Bingqing
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 1
Year: 2014
Pages: 41-52
Summary lang: English
.
Category: math
.
Summary: In this paper, we consider some evolution equations of generalized Ricci curvature and generalized scalar curvature under the List's flow. As applications, we obtain $L^2$-estimates for generalized scalar curvature and the first variational formulae for non-negative eigenvalues with respect to the Laplacian. (English)
Keyword: List's flow
Keyword: eigenvalue
Keyword: scalar curvature
MSC: 53C21
MSC: 53C44
idZBL: Zbl 06383784
idMR: MR3160825
.
Date available: 2014-01-17T09:33:35Z
Last updated: 2016-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/143567
.
Reference: [1] Cao X.D., Hamilton R.: Differential Harnack estimates for time-dependent heat equations with potentials.Geom. Funct. Anal. 19 (2009), 989–1000. Zbl 1183.53059, MR 2570311, 10.1007/s00039-009-0024-4
Reference: [2] Fang S.W.: Differential Harnack inequalities for heat equations with potentials under the Bernhard List's flow.Geom. Dedicata 161 (2012), 11–22. Zbl 1253.53034, MR 2994028, 10.1007/s10711-011-9690-0
Reference: [3] Ma B.Q., Huang G.Y.: Lower bounds for the scalar curvature of noncompact gradient solitons of List's flow.Arch. Math. 100 (2013), 593–599. MR 3069112, 10.1007/s00013-013-0534-z
Reference: [4] Li Y.: Eigenvalues and entropys under the harmonic-Ricci flow.arXiv:1011.1697, to appear in Pacific J. Math.
Reference: [5] List B.: Evolution of an extended Ricci flow system.PhD Thesis, AEI Potsdam, http://www.diss.fu-berlin.de/2006/180/index.html (2006). Zbl 1166.53044
Reference: [6] List B.: Evolution of an extended Ricci flow system.Comm. Anal. Geom. 16 (2008), 1007–1048. Zbl 1166.53044, MR 2471366, 10.4310/CAG.2008.v16.n5.a5
Reference: [7] Lott J., Sesum N.: Ricci flow on three-dimensional manifolds with symmetry.arXiv:1102.4384, to appear in Comm. Math. Helv.
Reference: [8] Müller R.: Ricci flow coupled with harmonic map flow.Ann. Sci. Éc. Norm. Supér. 45 (2012), 101–142. Zbl 1247.53082, MR 2961788
Reference: [9] Qian Z.M.: Ricci flow on a $3$-manifold with positive scalar curvature.Bull. Sci. Math. 133 (2009), 145–168. Zbl 1160.53368, MR 2494463, 10.1016/j.bulsci.2007.12.002
Reference: [10] Wang L.F.: Differential Harnack inequalities under a coupled Ricci flow.Math. Phys. Anal. Geom. 15 (2012), 343–360. Zbl 1257.53101, MR 2996456, 10.1007/s11040-012-9115-9
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-1_5.pdf 217.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo