Previous |  Up |  Next

Article

Keywords:
$p$-pseudocompactness; ultrapseudocompactness; strongly pseudocompactness; strongly $p$-pseudocompactness; weak $P$-points; $\mathfrak{c}-OK$ points; Rudin-Keisler pre-order
Summary:
For a free ultrafilter $p$ on $\mathbb{N}$, the concepts of strong pseudocompactness, strong $p$-pseudocompactness and pseudo-$\omega$-boundedness were introduced in [Angoa J., Ortiz-Castillo Y.F., Tamariz-Mascarúa A., Ultrafilters and properties related to compactness, Topology Proc. 43 (2014), 183--200] and [García-Ferreira S., Ortiz-Castillo Y.F., Strong pseudocompact properties of certain subspaces of $\mathbb N^*$, submitted]. These properties in a space $X$ characterize the pseudocompactness of the hyperspace $\mathcal{K}(X)$ of compact subsets of $X$ with the Vietoris topology. In this paper, we study the strong pseudocompactness and strong $p$-pseudocompactness of certain spaces. Besides, we established a relationship between these kind of properties and a result involving topological groups of I. Protasov [Discrete subsets of topological groups, Math. Notes 55 (1994), no. 1--2, 101--102].
References:
[1] Akin E.: Recurrence in Topological Dynamics: Furstenberg Families and Ellis Actions. The University Series in Mathematics, Plenum Press, New York, 1997. MR 1467479 | Zbl 0919.54033
[2] Angoa J., Ortiz-Castillo Y.F., Tamariz-Mascarua A.: Compact like properties on hyperspaces. Mat. Vesnik 65 no. 3 (2013), 306–318. MR 3057283
[3] Angoa J., Ortiz-Castillo Y.F., Tamariz-Mascarúa A.: Ultrafilters and properties related to compactness. Topology Proc. 43 (2014), 183–200. MR 3096293
[4] Bernstein A.: A new kind of compactness for topological spaces. Fund. Math. 66 (1970), 185–193. MR 0251697 | Zbl 0198.55401
[5] Comfort W.W.: Ultrafilters: some old and some new results. Bull. Amer. Math. Soc. 83 (1977), no. 4, 417–455. DOI 10.1090/S0002-9904-1977-14316-4 | MR 0454893 | Zbl 0355.54005
[6] Comfort W.W., Negrepontis S.: The theory of ultrafilters. Die Grundlehren der mathematischen Wissenschaften, 211, Springer, New York-Heidelberg, 1974. MR 0396267 | Zbl 0298.02004
[7] Engelking R.: General Topology. Heldermann Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[8] Furstenberg H.: Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, Princeton, 1981. MR 0603625 | Zbl 0459.28023
[9] García-Ferreira S., Ortiz-Castillo Y.F.: Strong pseudocompact properties of certain subspaces of $\mathbb N^*$. submitted.
[10] García-Ferreira S., Sanchiz M.: On $C$-compact subsets. Houston J. Math. 23 (1997), 65–86. MR 1688689
[11] Ginsburg J., Saks V.: Some applications of ultrafilters in topology. Pacific J. Math. 57 (1975), 403–418. DOI 10.2140/pjm.1975.57.403 | MR 0380736 | Zbl 0288.54020
[12] Protasov I.V.: Discrete subsets of topological groups. Math. Notes 55 (1994), no. 1–2, 101–102. DOI 10.1007/BF02110773 | MR 1275313 | Zbl 0833.22005
[13] Shelah S.: Proper Forcing. Lecture Notes in Mathematics, 940, Springer, Berlin-New York, 1982. DOI 10.1007/BFb0096536 | MR 0675955 | Zbl 0819.03042
[14] Simon P.: Applications of independent linked families. Topology, Theory and Applications (Eger, 1983), Colloq. Math. Soc. János Bolyai 41, North-Holland, Amsterdam-New York, 1985, pp. 561–580. MR 0863940 | Zbl 0615.54004
Partner of
EuDML logo