Title:
|
Strong pseudocompact properties (English) |
Author:
|
García-Ferreira, S. |
Author:
|
Ortiz-Castillo, Y. F. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
55 |
Issue:
|
1 |
Year:
|
2014 |
Pages:
|
101-109 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For a free ultrafilter $p$ on $\mathbb{N}$,
the concepts of strong pseudocompactness,
strong $p$-pseudocompactness and
pseudo-$\omega$-boundedness were
introduced in [Angoa J., Ortiz-Castillo Y.F.,
Tamariz-Mascarúa A., Ultrafilters and
properties related to compactness,
Topology Proc. 43 (2014), 183--200]
and [García-Ferreira S., Ortiz-Castillo Y.F.,
Strong pseudocompact properties of
certain subspaces of $\mathbb N^*$,
submitted]. These properties in a space
$X$ characterize the pseudocompactness
of the hyperspace $\mathcal{K}(X)$ of
compact subsets of $X$ with the Vietoris
topology. In this paper, we study the
strong pseudocompactness and strong
$p$-pseudocompactness of certain spaces.
Besides, we established a relationship
between these kind of properties and
a result involving topological groups
of I. Protasov [Discrete subsets of
topological groups, Math. Notes 55
(1994), no. 1--2, 101--102]. (English) |
Keyword:
|
$p$-pseudocompactness |
Keyword:
|
ultrapseudocompactness |
Keyword:
|
strongly pseudocompactness |
Keyword:
|
strongly $p$-pseudocompactness |
Keyword:
|
weak $P$-points |
Keyword:
|
$\mathfrak{c}-OK$ points |
Keyword:
|
Rudin-Keisler pre-order |
MSC:
|
54A20 |
MSC:
|
54D30 |
MSC:
|
54D80 |
MSC:
|
54D99 |
idZBL:
|
Zbl 06383787 |
idMR:
|
MR3160828 |
. |
Date available:
|
2014-01-17T09:38:03Z |
Last updated:
|
2016-04-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143570 |
. |
Reference:
|
[1] Akin E.: Recurrence in Topological Dynamics: Furstenberg Families and Ellis Actions.The University Series in Mathematics, Plenum Press, New York, 1997. Zbl 0919.54033, MR 1467479 |
Reference:
|
[2] Angoa J., Ortiz-Castillo Y.F., Tamariz-Mascarua A.: Compact like properties on hyperspaces.Mat. Vesnik 65 no. 3 (2013), 306–318. MR 3057283 |
Reference:
|
[3] Angoa J., Ortiz-Castillo Y.F., Tamariz-Mascarúa A.: Ultrafilters and properties related to compactness.Topology Proc. 43 (2014), 183–200. MR 3096293 |
Reference:
|
[4] Bernstein A.: A new kind of compactness for topological spaces.Fund. Math. 66 (1970), 185–193. Zbl 0198.55401, MR 0251697 |
Reference:
|
[5] Comfort W.W.: Ultrafilters: some old and some new results.Bull. Amer. Math. Soc. 83 (1977), no. 4, 417–455. Zbl 0355.54005, MR 0454893, 10.1090/S0002-9904-1977-14316-4 |
Reference:
|
[6] Comfort W.W., Negrepontis S.: The theory of ultrafilters.Die Grundlehren der mathematischen Wissenschaften, 211, Springer, New York-Heidelberg, 1974. Zbl 0298.02004, MR 0396267 |
Reference:
|
[7] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[8] Furstenberg H.: Recurrence in Ergodic Theory and Combinatorial Number Theory.Princeton University Press, Princeton, 1981. Zbl 0459.28023, MR 0603625 |
Reference:
|
[9] García-Ferreira S., Ortiz-Castillo Y.F.: Strong pseudocompact properties of certain subspaces of $\mathbb N^*$.submitted. |
Reference:
|
[10] García-Ferreira S., Sanchiz M.: On $C$-compact subsets.Houston J. Math. 23 (1997), 65–86. MR 1688689 |
Reference:
|
[11] Ginsburg J., Saks V.: Some applications of ultrafilters in topology.Pacific J. Math. 57 (1975), 403–418. Zbl 0288.54020, MR 0380736, 10.2140/pjm.1975.57.403 |
Reference:
|
[12] Protasov I.V.: Discrete subsets of topological groups.Math. Notes 55 (1994), no. 1–2, 101–102. Zbl 0833.22005, MR 1275313, 10.1007/BF02110773 |
Reference:
|
[13] Shelah S.: Proper Forcing.Lecture Notes in Mathematics, 940, Springer, Berlin-New York, 1982. Zbl 0819.03042, MR 0675955, 10.1007/BFb0096536 |
Reference:
|
[14] Simon P.: Applications of independent linked families.Topology, Theory and Applications (Eger, 1983), Colloq. Math. Soc. János Bolyai 41, North-Holland, Amsterdam-New York, 1985, pp. 561–580. Zbl 0615.54004, MR 0863940 |
. |