Previous |  Up |  Next

Article

Title: Strong pseudocompact properties (English)
Author: García-Ferreira, S.
Author: Ortiz-Castillo, Y. F.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 1
Year: 2014
Pages: 101-109
Summary lang: English
.
Category: math
.
Summary: For a free ultrafilter $p$ on $\mathbb{N}$, the concepts of strong pseudocompactness, strong $p$-pseudocompactness and pseudo-$\omega$-boundedness were introduced in [Angoa J., Ortiz-Castillo Y.F., Tamariz-Mascarúa A., Ultrafilters and properties related to compactness, Topology Proc. 43 (2014), 183--200] and [García-Ferreira S., Ortiz-Castillo Y.F., Strong pseudocompact properties of certain subspaces of $\mathbb N^*$, submitted]. These properties in a space $X$ characterize the pseudocompactness of the hyperspace $\mathcal{K}(X)$ of compact subsets of $X$ with the Vietoris topology. In this paper, we study the strong pseudocompactness and strong $p$-pseudocompactness of certain spaces. Besides, we established a relationship between these kind of properties and a result involving topological groups of I. Protasov [Discrete subsets of topological groups, Math. Notes 55 (1994), no. 1--2, 101--102]. (English)
Keyword: $p$-pseudocompactness
Keyword: ultrapseudocompactness
Keyword: strongly pseudocompactness
Keyword: strongly $p$-pseudocompactness
Keyword: weak $P$-points
Keyword: $\mathfrak{c}-OK$ points
Keyword: Rudin-Keisler pre-order
MSC: 54A20
MSC: 54D30
MSC: 54D80
MSC: 54D99
idZBL: Zbl 06383787
idMR: MR3160828
.
Date available: 2014-01-17T09:38:03Z
Last updated: 2016-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/143570
.
Reference: [1] Akin E.: Recurrence in Topological Dynamics: Furstenberg Families and Ellis Actions.The University Series in Mathematics, Plenum Press, New York, 1997. Zbl 0919.54033, MR 1467479
Reference: [2] Angoa J., Ortiz-Castillo Y.F., Tamariz-Mascarua A.: Compact like properties on hyperspaces.Mat. Vesnik 65 no. 3 (2013), 306–318. MR 3057283
Reference: [3] Angoa J., Ortiz-Castillo Y.F., Tamariz-Mascarúa A.: Ultrafilters and properties related to compactness.Topology Proc. 43 (2014), 183–200. MR 3096293
Reference: [4] Bernstein A.: A new kind of compactness for topological spaces.Fund. Math. 66 (1970), 185–193. Zbl 0198.55401, MR 0251697
Reference: [5] Comfort W.W.: Ultrafilters: some old and some new results.Bull. Amer. Math. Soc. 83 (1977), no. 4, 417–455. Zbl 0355.54005, MR 0454893, 10.1090/S0002-9904-1977-14316-4
Reference: [6] Comfort W.W., Negrepontis S.: The theory of ultrafilters.Die Grundlehren der mathematischen Wissenschaften, 211, Springer, New York-Heidelberg, 1974. Zbl 0298.02004, MR 0396267
Reference: [7] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [8] Furstenberg H.: Recurrence in Ergodic Theory and Combinatorial Number Theory.Princeton University Press, Princeton, 1981. Zbl 0459.28023, MR 0603625
Reference: [9] García-Ferreira S., Ortiz-Castillo Y.F.: Strong pseudocompact properties of certain subspaces of $\mathbb N^*$.submitted.
Reference: [10] García-Ferreira S., Sanchiz M.: On $C$-compact subsets.Houston J. Math. 23 (1997), 65–86. MR 1688689
Reference: [11] Ginsburg J., Saks V.: Some applications of ultrafilters in topology.Pacific J. Math. 57 (1975), 403–418. Zbl 0288.54020, MR 0380736, 10.2140/pjm.1975.57.403
Reference: [12] Protasov I.V.: Discrete subsets of topological groups.Math. Notes 55 (1994), no. 1–2, 101–102. Zbl 0833.22005, MR 1275313, 10.1007/BF02110773
Reference: [13] Shelah S.: Proper Forcing.Lecture Notes in Mathematics, 940, Springer, Berlin-New York, 1982. Zbl 0819.03042, MR 0675955, 10.1007/BFb0096536
Reference: [14] Simon P.: Applications of independent linked families.Topology, Theory and Applications (Eger, 1983), Colloq. Math. Soc. János Bolyai 41, North-Holland, Amsterdam-New York, 1985, pp. 561–580. Zbl 0615.54004, MR 0863940
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-1_8.pdf 252.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo