Previous |  Up |  Next

Article

Title: Complete $q$-order moment convergence of moving average processes under $\varphi $-mixing assumptions (English)
Author: Zhou, Xing-Cai
Author: Lin, Jin-Guan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 1
Year: 2014
Pages: 69-83
Summary lang: English
.
Category: math
.
Summary: Let $\{Y_i, -\infty <i<\infty \}$ be a doubly infinite sequence of identically distributed $\varphi $-mixing random variables, and $\{a_i, -\infty <i<\infty \}$ an absolutely summable sequence of real numbers. We prove the complete $q$-order moment convergence for the partial sums of moving average processes $\Big \{X_n=\sum _{i=-\infty }^\infty a_i Y_{i+n},n\geq 1\Big \}$ based on the sequence $\{Y_i, -\infty <i<\infty \}$ of $\varphi $-mixing random variables under some suitable conditions. These results generalize and complement earlier results. (English)
Keyword: moving average
Keyword: $\varphi $-mixing
Keyword: complete convergence
Keyword: $q$-order moment
Keyword: maximum of partial sums
MSC: 60F15
MSC: 60G50
idZBL: Zbl 06346373
idMR: MR3164577
DOI: 10.1007/s10492-014-0042-x
.
Date available: 2014-01-28T13:57:39Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143599
.
Reference: [1] Baek, J.-I., Kim, T.-S., Liang, H.-Y.: On the convergence of moving average processes under dependent conditions.Aust. N. Z. J. Stat. 45 (2003), 331-342. Zbl 1082.60028, MR 1999515, 10.1111/1467-842X.00287
Reference: [2] Burton, R. M., Dehling, H.: Large deviations for some weakly dependent random processes.Stat. Probab. Lett. 9 (1990), 397-401. Zbl 0699.60016, MR 1060081, 10.1016/0167-7152(90)90031-2
Reference: [3] Chen, P., Hu, T.-C., Volodin, A.: Limiting behaviour of moving average processes under negative association assumption.Theory Probab. Math. Stat. 77 (2008), 165-176; Teor. Jmovirn. Mat. Stat. 77 149-160 (2007). Zbl 1199.60074, MR 2432780, 10.1090/S0094-9000-09-00755-8
Reference: [4] Chen, P., Hu, T.-C., Volodin, A.: Limiting behaviour of moving average processes under $\varphi$-mixing assumption.Stat. Probab. Lett. 79 (2009), 105-111. Zbl 1154.60026, MR 2483402, 10.1016/j.spl.2008.07.026
Reference: [5] Chen, P., Wang, D.: Convergence rates for probabilities of moderate deviations for moving average processes.Acta Math. Sin., Engl. Ser. 24 (2008), 611-622. Zbl 1159.60015, MR 2393155, 10.1007/s10114-007-6062-7
Reference: [6] Chow, Y. S.: On the rate of moment convergence of sample sums and extremes.Bull. Inst. Math., Acad. Sin. 16 (1988), 177-201. Zbl 0655.60028, MR 1089491
Reference: [7] Hsu, P. L., Robbins, H.: Complete convergence and the law of large numbers.Proc. Natl. Acad. Sci. USA 33 (1947), 25-31. Zbl 0030.20101, MR 0019852, 10.1073/pnas.33.2.25
Reference: [8] Ibragimov, I. A.: Some limit theorems for stationary processes.Theor. Probab. Appl. 7 (1963), 349-382; Teor. Veroyatn. Primen 7 361-392 (1962), Russian. MR 0148125, 10.1137/1107036
Reference: [9] Kim, T.-S., Ko, M.-H.: Complete moment convergence of moving average processes under dependence assumptions.Stat. Probab. Lett. 78 (2008), 839-846. Zbl 1140.60315, MR 2398357, 10.1016/j.spl.2007.09.009
Reference: [10] Lai, T. L.: Convergence rates and $r$-quick versions of the strong law for stationary mixing sequences.Ann. Probab. 5 (1977), 693-706. Zbl 0389.60020, MR 0471043, 10.1214/aop/1176995713
Reference: [11] Li, D., Rao, M. Bhaskara, Wang, X.: Complete convergence of moving average processes.Stat. Probab. Lett. 14 (1992), 111-114. MR 1173407, 10.1016/0167-7152(92)90073-E
Reference: [12] Li, D., Spătaru, A.: Refinement of convergence rates for tail probabilities.J. Theor. Probab. 18 (2005), 933-947. Zbl 1085.60013, MR 2289939, 10.1007/s10959-005-7534-2
Reference: [13] Li, Y.-X., Zhang, L.-X.: Complete moment convergence of moving-average processes under dependence assumptions.Stat. Probab. Lett. 70 (2004), 191-197. Zbl 1056.62100, MR 2108085, 10.1016/j.spl.2004.10.003
Reference: [14] Peligrad, M.: The $r$-quick version of the strong law for stationary $\varphi$-mixing sequences.Almost Everywhere Convergence, Proc. Int. Conf., Columbus/OH 1988 G. A. Edgar et al. Academic Press New York (1989), 335-348. MR 1035254
Reference: [15] Shao, Q.: A moment inequality and its applications.Acta Math. Sin. 31 (1988), 736-747 Chinese. Zbl 0698.60025, MR 1000416
Reference: [16] Shao, Q.: Complete convergence for $\rho$-mixing sequences.Acta Math. Sin. 32 (1989), 377-393 Chinese. Zbl 0686.60025, MR 1212051
Reference: [17] Yu, D., Wang, Z.: Complete convergence of moving average processes under negative dependence assumptions.Math. Appl. 15 (2002), 30-34. Zbl 1010.62081, MR 1889135
Reference: [18] Zhang, L.-X.: Complete convergence of moving average processes under dependence assumptions.Stat. Probab. Lett. 30 (1996), 165-170. Zbl 0873.60019, MR 1417003, 10.1016/0167-7152(95)00215-4
Reference: [19] Zhou, X.: Complete moment convergence of moving average processes under $\varphi$-mixing assumptions.Stat. Probab. Lett. 80 (2010), 285-292. Zbl 1186.60031, MR 2593564, 10.1016/j.spl.2009.10.018
.

Files

Files Size Format View
AplMat_59-2014-1_6.pdf 266.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo