Previous |  Up |  Next

Article

Title: Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity (English)
Author: Laasri, Hafida
Author: El-Mennaoui, Omar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 4
Year: 2013
Pages: 887-908
Summary lang: English
.
Category: math
.
Summary: We study stability and integrability of linear non-autonomous evolutionary Cauchy-problem $$ ({\rm P}) \begin {cases} \dot {u}(t)+A(t)u(t)=f(t)\quad t\text {-a.e. on} [0,\tau ], u(0)=0, \end {cases} $$ where $A\colon [0,\tau ]\to \mathcal {L}(X,D)$ is a bounded and strongly measurable function and $X$, $D$ are Banach spaces such that $D\underset {d}\to {\hookrightarrow }X$. Our main concern is to characterize $L^p$-maximal regularity and to give an explicit approximation of the problem (P). (English)
Keyword: maximal regularity
Keyword: on-autonomous evolution equation
Keyword: stability for linear evolution equation
Keyword: integrability for linear evolution equation
MSC: 35K90
MSC: 47D06
idZBL: Zbl 06373950
idMR: MR3165503
DOI: 10.1007/s10587-013-0060-y
.
Date available: 2014-01-28T14:04:31Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143605
.
Reference: [1] Amann, H.: Maximal regularity for nonautonomous evolution equations.Adv. Nonlinear Stud. 4 (2004), 417-430. Zbl 1072.35103, MR 2100906, 10.1515/ans-2004-0404
Reference: [2] Arendt, W.: Semigroups and evolution equations: Functional calculus, regularity and kernel estimates.Handbook of Differential Equations: Evolutionary Equations vol. I C. M. Dafermos et al. Elsevier/North-Holland Amsterdam (2004), 1-85. Zbl 1082.35001, MR 2103696
Reference: [3] Arendt, W., Batty, C. J. K., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics 96.Birkhäuser Basel (2001). MR 1886588
Reference: [4] Arendt, W., Bu, S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity.Math. Z. 240 (2002), 311-343. Zbl 1018.47008, MR 1900314, 10.1007/s002090100384
Reference: [5] Arendt, W., Bu, S.: Tools for maximal regularity.Math. Proc. Camb. Philos. Soc. 134 (2003), 317-336. Zbl 1041.47018, MR 1972141, 10.1017/S0305004102006345
Reference: [6] Arendt, W., Bu, S.: Fourier series in Banach spaces and maximal regularity.Vector Measures, Integration and Related Topics. Selected papers from the 3rd conference on vector measures and integration, Eichsttt, Germany, September 24-26, 2008. Operator Theory: Advances and Applications 201 Birkhäuser Basel (2010), 21-39. Zbl 1254.42015, MR 2743491
Reference: [7] Arendt, W., Chill, R., Fornaro, S., Poupaud, C.: $L^p$-maximal regularity for nonautonomous evolution equations.J. Differ. Equations 237 (2007), 1-26. Zbl 1126.34037, MR 2327725, 10.1016/j.jde.2007.02.010
Reference: [8] Cannarsa, P., Vespri, V.: On maximal $L^{p}$ regularity for the abstract Cauchy problem.Boll. Unione Mat. Ital., VI. Ser., B 5 (1986), 165-175. MR 0841623
Reference: [9] Prato, G. Da, Grisvard, P.: Sommes d'opérateurs linéaires et équations différentielles opérationnelles.J. Math. Pur. Appl., IX. Sér. 54 (1975), 305-387 French. Zbl 0315.47009, MR 0442749
Reference: [10] Simon, L. De: Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine.Rend. Sem. Mat. Univ. Padova 34 (1964), 205-223 Italian. Zbl 0196.44803, MR 0176192
Reference: [11] Denk, R., Hieber, M., Prüss, J.: $\mathcal{R}$-boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type.Mem. Am. Math. Soc. Providence RI 166 (2003). MR 2006641
Reference: [12] Dore, G.: $L^{p}$-regularity for abstract differential equations.Functional Analysis and Related Topics, 1991. Proceedings of the international conference in memory of Professor Kôsaku Yosida held at RIMS, Kyoto University, Japan, July 29--Aug. 2, 1991. Lect. Notes Math. 1540 Springer Berlin (1993), 25-38. MR 1225809
Reference: [13] El-Mennaoui, O., Keyantuo, V., Laasri, H.: Infinitesimal product of semigroups.Ulmer Seminare 16 (2011), 219-230.
Reference: [14] Hieber, M., Monniaux, S.: Heat kernels and maximal $L_p-L_q$ estimates: The non-autonomous case.J. Fourier Anal. Appl. 6 (2000), 468-481. Zbl 0979.35028, 10.1007/BF02511541
Reference: [15] Hieber, M., Monniaux, S.: Pseudo-differential operators and maximal regularity results for non-autonomous parabolic equations.Proc. Am. Math. Soc. 128 (2000), 1047-1053. Zbl 0937.35195, MR 1641630, 10.1090/S0002-9939-99-05145-X
Reference: [16] Kalton, N. J., Lancien, G.: A solution to the problem of $L^p$-maximal regularity.Math. Z. 235 (2000), 559-568. Zbl 1010.47024, MR 1800212, 10.1007/PL00004816
Reference: [17] Kunstmann, P. C., Weis, L.: Maximal $L^p$-regularity for parabolic equations, Fourier multiplier theorems and $H^{\infty}$-functional calculus.Functional Analytic Methods for Evolution Equations. Based on lectures given at the autumn school on evolution equations and semigroups, Levico Terme, Trento, Italy, October 28--November 2, 2001. Lecture Notes in Mathematics 1855 M. Iannelli, et al. Springer Berlin (2004), 65-311. Zbl 1097.47041, MR 2108959, 10.1007/978-3-540-44653-8_2
Reference: [18] Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications 16.Birkhäuser Basel (1995). MR 1329547
Reference: [19] Portal, P., Štrkalj, Ž.: Pseudodifferential operators on Bochner spaces and an application.Math. Z. 253 (2006), 805-819. Zbl 1101.47030, MR 2221100, 10.1007/s00209-006-0934-x
Reference: [20] Prüss, J., Schnaubelt, R.: Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time.J. Math. Anal. Appl. 256 (2001), 405-430. Zbl 0994.35076, MR 1821747, 10.1006/jmaa.2000.7247
Reference: [21] Slavík, A.: Product Integration, Its History and Applications. History of Mathematics 29, Jindřich Nečas Center for Mathematical Modeling Lecture Notes 1.Matfyzpress Praha (2007). MR 2917851
Reference: [22] Sobolevskij, P. E.: Coerciveness inequalities for abstract parabolic equations.Sov. Math., Dokl. 5 (1964), 894-897 <title>Dokl. Akad. Nauk SSSR 157 (1964), 52-55 Russian. Zbl 0149.36001, MR 0166487
Reference: [23] Triebel, H.: Theory of Function Spaces. Monographs in Mathematics 78.Birkhäuser Basel (1983). MR 0781540
.

Files

Files Size Format View
CzechMathJ_63-2013-4_3.pdf 346.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo