Previous |  Up |  Next

Article

Title: Minimizing Laplacian spectral radius of unicyclic graphs with fixed girth (English)
Author: Patra, Kamal Lochan
Author: Sahoo, Binod Kumar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 4
Year: 2013
Pages: 909-922
Summary lang: English
.
Category: math
.
Summary: In this paper we consider the following problem: Over the class of all simple connected unicyclic graphs on $n$ vertices with girth $g$ ($n$, $g$ being fixed), which graph minimizes the Laplacian spectral radius? Let $U_{n,g}$ be the lollipop graph obtained by appending a pendent vertex of a path on $n-g$ $(n> g)$ vertices to a vertex of a cycle on $g\geq 3$ vertices. We prove that the graph $U_{n,g}$ uniquely minimizes the Laplacian spectral radius for $n\geq 2g-1$ when $g$ is even and for $n\geq 3g-1$ when $g$ is odd. (English)
Keyword: Laplacian matrix
Keyword: Laplacian spectral radius
Keyword: girth
Keyword: unicyclic graph
MSC: 05C50
idZBL: Zbl 06373951
idMR: MR3165504
DOI: 10.1007/s10587-013-0061-x
.
Date available: 2014-01-28T14:05:16Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143606
.
Reference: [1] Fallat, S. M., Kirkland, S., Pati, S.: Minimizing algebraic connectivity over connected graphs with fixed girth.Discrete Math. 254 (2002), 115-142. Zbl 0995.05092, MR 1909864, 10.1016/S0012-365X(01)00355-7
Reference: [2] Fallat, S. M., Kirkland, S., Pati, S.: Maximizing algebraic connectivity over unicyclic graphs.Linear Multilinear Algebra 51 (2003), 221-241. Zbl 1043.05074, MR 1995656, 10.1080/0308108031000069182
Reference: [3] Fiedler, M.: Algebraic connectivity of graphs.Czech. Math. J. 23 (1973), 298-305. Zbl 0265.05119, MR 0318007
Reference: [4] Grone, R., Merris, R.: The Laplacian spectrum of a graph. II.SIAM J. Discrete Math. 7 (1994), 221-229. Zbl 0795.05092, MR 1271994, 10.1137/S0895480191222653
Reference: [5] Grone, R., Merris, R., Sunder, V. S.: The Laplacian spectrum of a graph.SIAM J. Matrix Anal. Appl. 11 (1990), 218-238. Zbl 0733.05060, MR 1041245, 10.1137/0611016
Reference: [6] Guo, J.-M.: The effect on the Laplacian spectral radius of a graph by adding or grafting edges.Linear Algebra Appl. 413 (2006), 59-71. Zbl 1082.05059, MR 2202092
Reference: [7] Guo, J.-M.: The Laplacian spectral radius of a graph under perturbation.Comput. Math. Appl. 54 (2007), 709-720. Zbl 1155.05330, MR 2347934, 10.1016/j.camwa.2007.02.009
Reference: [8] Horn, R. A., Johnson, C. R.: Matrix Analysis.Reprinted with corrections Cambridge University Press, Cambridge (1990). Zbl 0704.15002, MR 1084815
Reference: [9] Lal, A. K., Patra, K. L.: Maximizing Laplacian spectral radius over trees with fixed diameter.Linear Multilinear Algebra 55 (2007), 457-461. Zbl 1124.05064, MR 2363546, 10.1080/03081080600618738
Reference: [10] Merris, R.: Laplacian matrices of graphs: A survey.Linear Algebra Appl. 197-198 (1994), 143-176. Zbl 0802.05053, MR 1275613
Reference: [11] Merris, R.: A survey of graph Laplacians.Linear Multilinear Algebra 39 (1995), 19-31. Zbl 0832.05081, MR 1374468, 10.1080/03081089508818377
Reference: [12] Mohar, B.: The Laplacian spectrum of graphs.Alavi, Y. Graph Theory, Combinatorics and Applications, Kalamazoo, MI, 1988, Vol. 2 Wiley-Intersci. Publ. Wiley, New York 871-898 (1991). Zbl 0840.05059, MR 1170831
.

Files

Files Size Format View
CzechMathJ_63-2013-4_4.pdf 298.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo