Title:
|
Hexavalent $(G,s)$-transitive graphs (English) |
Author:
|
Guo, Song-Tao |
Author:
|
Hua, Xiao-Hui |
Author:
|
Li, Yan-Tao |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
63 |
Issue:
|
4 |
Year:
|
2013 |
Pages:
|
923-931 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $X$ be a finite simple undirected graph with a subgroup $G$ of the full automorphism group ${\rm Aut}(X)$. Then $X$ is said to be $(G,s)$-transitive for a positive integer $s$, if $G$ is transitive on $s$-arcs but not on $(s+1)$-arcs, and $s$-transitive if it is $({\rm Aut}(X),s)$-transitive. Let $G_v$ be a stabilizer of a vertex $v\in V(X)$ in $G$. Up to now, the structures of vertex stabilizers $G_v$ of cubic, tetravalent or pentavalent $(G,s)$-transitive graphs are known. Thus, in this paper, we give the structure of the vertex stabilizers $G_v$ of connected hexavalent $(G,s)$-transitive graphs. (English) |
Keyword:
|
symmetric graph |
Keyword:
|
$s$-transitive graph |
Keyword:
|
$(G,s)$-transitive graph |
MSC:
|
05C25 |
MSC:
|
20B25 |
idZBL:
|
Zbl 06373952 |
idMR:
|
MR3165505 |
DOI:
|
10.1007/s10587-013-0062-9 |
. |
Date available:
|
2014-01-28T14:06:35Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143607 |
. |
Reference:
|
[1] Bosma, W., Cannon, C., Playoust, C.: The Magma algebra system. I: The user language.J. Symb. Comput. 24 (1997), 235-265. Zbl 0898.68039, MR 1484478, 10.1006/jsco.1996.0125 |
Reference:
|
[2] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups.Maximal subgroups and ordinary characters for simple groups Clarendon Press, Oxford (1985). Zbl 0568.20001, MR 0827219 |
Reference:
|
[3] Dixon, J. D., Mortimer, B.: Permutation Groups.Graduate Texts in Mathematics 163 Springer, New York (1996). Zbl 0951.20001, MR 1409812 |
Reference:
|
[4] Djoković, D. Ž., Miller, G. L.: Regular groups of automorphisms of cubic graphs.J. Comb. Theory, Ser. B 29 (1980), 195-230. Zbl 0385.05040, MR 0586434, 10.1016/0095-8956(80)90081-7 |
Reference:
|
[5] Gardiner, A.: Arc transitivity in graphs.Q. J. Math., Oxf. II. Ser. 24 (1973), 399-407. Zbl 0262.05112, MR 0323617, 10.1093/qmath/24.1.399 |
Reference:
|
[6] Gardiner, A.: Arc transitivity in graphs. II.Q. J. Math., Oxf. II. Ser. 25 (1974), 163-167. Zbl 0305.05111, MR 0412015, 10.1093/qmath/25.1.163 |
Reference:
|
[7] Gardiner, A.: Arc transitivity in graphs. III.Q. J. Math., Oxf. II. Ser. 27 (1976), 313-323. Zbl 0337.05117, MR 0498228, 10.1093/qmath/27.3.313 |
Reference:
|
[8] Guo, S. T., Feng, Y. Q.: A note on pentavalent $s$-transitive graphs.Discrete Math. 312 (2012), 2214-2216. Zbl 1246.05105, MR 2926093, 10.1016/j.disc.2012.04.015 |
Reference:
|
[9] Li, C. H.: The finite vertex-primitive and vertex-biprimitive $s$-transitive graphs for $s\geq 4$.Trans. Am. Math. Soc. (electronic) 353 (2001), 3511-3529. MR 1837245, 10.1090/S0002-9947-01-02768-4 |
Reference:
|
[10] Potočnik, P.: A list of $4$-valent $2$-arc-transitive graphs and finite faithful amalgams of index $(4,2)$.Eur. J. Comb. 30 (2009), 1323-1336. Zbl 1208.05056, MR 2514656, 10.1016/j.ejc.2008.10.001 |
Reference:
|
[11] Potočnik, P., Spiga, P., Verret, G.: Tetravalent arc-transitive graphs with unbounded vertex-stabilizers.Bull. Aust. Math. Soc. 84 (2011), 79-89. Zbl 1222.05102, MR 2817661, 10.1017/S0004972710002078 |
Reference:
|
[12] Stroth, G., Weiss, R.: A new construction of the group $ Ru$.Q. J. Math., Oxf. II. Ser. 41 (1990), 237-243. Zbl 0695.20015, MR 1053664 |
Reference:
|
[13] Tutte, W. T.: A family of cubical graphs.Proc. Camb. Philos. Soc. 43 (1947), 459-474. Zbl 0029.42401, MR 0021678, 10.1017/S0305004100023720 |
Reference:
|
[14] Weiss, R. M.: Über symmetrische Graphen vom Grad fünf.J. Comb. Theory, Ser. B 17 (1974), 59-64 German. Zbl 0298.05130, MR 0369151, 10.1016/0095-8956(74)90049-5 |
Reference:
|
[15] Weiss, R. M.: Über symmetrische Graphen, deren Valenz eine Primzahl ist.Math. Z. 136 (1974), 277-278 German. Zbl 0268.05110, MR 0360348, 10.1007/BF01214131 |
Reference:
|
[16] Weiss, R. M.: An application of $p$-factorization methods to symmetric graphs.Math. Proc. Camb. Philos. Soc. 85 (1979), 43-48. Zbl 0392.20002, MR 0510398, 10.1017/S030500410005547X |
Reference:
|
[17] Weiss, R. M.: The nonexistence of $8$-transitive graphs.Combinatorica 1 (1981), 309-311. Zbl 0486.05032, MR 0637836, 10.1007/BF02579337 |
Reference:
|
[18] Weiss, R. M.: $s$-transitive graphs.Algebraic Methods in Graph Theory, Vol. I, II Colloq. Math. Soc. Janos Bolyai 25 (Szeged, 1978) (1981), 827-847 North-Holland, Amsterdam. Zbl 0475.05040, MR 0642075 |
Reference:
|
[19] Weiss, R. M.: Presentations for $(G,s)$-transitive graphs of small valency.Math. Proc. Camb. Phil. Soc. 101 (1987), 7-20. MR 0877697, 10.1017/S0305004100066378 |
Reference:
|
[20] Wielandt, H.: Finite Permutation Groups. Translated from the German by R. Bercov.Academic Press, New York (1964). MR 0183775 |
Reference:
|
[21] Zhou, J. X., Feng, Y. Q.: On symmetric graphs of valency five.Discrete Math. 310 (2010), 1725-1732. Zbl 1225.05131, MR 2610275, 10.1016/j.disc.2009.11.019 |
. |