Previous |  Up |  Next

Article

Title: A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation (English)
Author: Šebestová, Ivana
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 2
Year: 2014
Pages: 121-144
Summary lang: English
.
Category: math
.
Summary: We deal with the numerical solution of the nonstationary heat conduction equation with mixed Dirichlet/Neumann boundary conditions. The backward Euler method is employed for the time discretization and the interior penalty discontinuous Galerkin method for the space discretization. Assuming shape regularity, local quasi-uniformity, and transition conditions, we derive both a posteriori upper and lower error bounds. The analysis is based on the Helmholtz decomposition, the averaging interpolation operator, and on the use of cut-off functions. Numerical experiments are presented. (English)
Keyword: discontinuous Galerkin method
Keyword: Helmholtz decomposition
Keyword: averaging interpolation operator
Keyword: Euler backward scheme
Keyword: residual-based a posteriori error estimate
Keyword: local cut-off function
MSC: 65M15
MSC: 65M60
idZBL: Zbl 06362217
idMR: MR3183468
DOI: 10.1007/s10492-014-0045-7
.
Date available: 2014-03-20T08:16:51Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143624
.
Reference: [1] Ainsworth, M.: A posteriori error estimation for discontinuous Galerkin finite element approximation.SIAM J. Numer. Anal. 45 (2007), 1777-1798. Zbl 1151.65083, MR 2338409, 10.1137/060665993
Reference: [2] Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D.: Unified analysis of discontinuous Galerkin methods for elliptic problems.SIAM J. Numer. Anal. 39 (2002), 1749-1779. Zbl 1008.65080, MR 1885715, 10.1137/S0036142901384162
Reference: [3] Becker, R., Hansbo, P., Larson, M. G.: Energy norm a posteriori error estimation for discontinuous Galerkin methods.Comput. Methods Appl. Mech. Eng. 192 (2003), 723-733. Zbl 1042.65083, MR 1952357, 10.1016/S0045-7825(02)00593-5
Reference: [4] Dari, E., Duran, R., Padra, C., Vampa, V.: A posteriori error estimators for nonconforming finite element methods.RAIRO, Modélisation Math. Anal. Numér. 30 (1996), 385-400. Zbl 0853.65110, MR 1399496, 10.1051/m2an/1996300403851
Reference: [5] Ern, A., Vohralík, M.: A posteriori error estimation based on potential and flux reconstruction for the heat equation.SIAM J. Numer. Anal. 48 (2010), 198-223. Zbl 1215.65152, MR 2608366, 10.1137/090759008
Reference: [6] Feistauer, M., Dolejší, V., Kučera, V., Sobotíková, V.: $L^{\infty}(L^2)$-error estimates for the DGFEM applied to convection-diffusion problems on nonconforming meshes.J. Numer. Math. 17 (2009), 45-65. Zbl 1171.65064, MR 2541520, 10.1515/JNUM.2009.004
Reference: [7] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Theory and algorithms. (Extended version of the 1979 publ.).Springer Series in Computational Mathematics 5 Springer, Berlin (1986). Zbl 0585.65077, MR 0851383
Reference: [8] Karakashian, O. A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems.SIAM J. Numer. Anal. 41 (2003), 2374-2399. Zbl 1058.65120, MR 2034620, 10.1137/S0036142902405217
Reference: [9] Karakashian, O. A., Pascal, F.: Adaptive discontinuous Galerkin approximations of second-order elliptic problems.European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004 P. Neittaanmäki et al. University of Jyväskylä Jyväskylä (2004).
Reference: [10] Karakashian, O. A., Pascal, F.: Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems.SIAM J. Numer. Anal. 45 (2007), 641-665. Zbl 1140.65083, MR 2300291, 10.1137/05063979X
Reference: [11] Nečas, J.: Direct methods in the theory of elliptic equations.Academia Prague (1967); Masson et Cie, Paris, 1967, French. Zbl 1225.35003
Reference: [12] Nicaise, S., Soualem, N.: A posteriori error estimates for a nonconforming finite element discretization of the heat equation.ESAIM, Math. Model. Numer. Anal. 39 (2005), 319-348. Zbl 1078.65079, MR 2143951, 10.1051/m2an:2005009
Reference: [13] Repin, S.: Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation.Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 13 (2002), 121-133. Zbl 1221.65244, MR 1949485
Reference: [14] Šebestová, I.: A posteriori error estimates of the discontinuous Galerkin method for convection-diffusion equations. Master Thesis.Charles University in Prague Prague (2009).
Reference: [15] Šebestová, I., Dolejší, V.: A posteriori error estimates of the discontinuous Galerkin method for the heat conduction equation.Acta Univ. Carol., Math. Phys. 53 (2012), 77-94. Zbl 1280.65098, MR 3099403
Reference: [16] Verfürth, R.: A posteriori error estimates for finite element discretizations of the heat equation.Calcolo 40 (2003), 195-212. Zbl 1168.65418, MR 2025602, 10.1007/s10092-003-0073-2
Reference: [17] Verfürth, R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques.Wiley-Teubner Series Advances in Numerical Mathematics John Wiley & Sons, Chichester (1996). Zbl 0853.65108
.

Files

Files Size Format View
AplMat_59-2014-2_1.pdf 361.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo