Previous |  Up |  Next

Article

Title: Existence of nonzero solutions for a class of damped vibration problems with impulsive effects (English)
Author: Bai, Liang
Author: Dai, Binxiang
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 2
Year: 2014
Pages: 145-165
Summary lang: English
.
Category: math
.
Summary: In this paper, a class of damped vibration problems with impulsive effects is considered. An existence result is obtained by using the variational method and the critical point theorem due to Brezis and Nirenberg. The obtained result is also valid and new for the corresponding second-order impulsive Hamiltonian system. Finally, an example is presented to illustrate the feasibility and effectiveness of the result. (English)
Keyword: impulsive problem
Keyword: damped vibration problem
Keyword: variational method
Keyword: critical point
MSC: 34B37
MSC: 58E30
idZBL: Zbl 06362218
idMR: MR3183469
DOI: 10.1007/s10492-014-0046-6
.
Date available: 2014-03-20T08:18:49Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143626
.
Reference: [1] Agarwal, R. P., O'Regan, D.: A multiplicity result for second order impulsive differential equations via the Leggett Williams fixed point theorem.Appl. Math. Comput. 161 (2005), 433-439. Zbl 1070.34042, MR 2112416, 10.1016/j.amc.2003.12.096
Reference: [2] Bai, L., Dai, B.: An application of variational method to a class of Dirichlet boundary value problems with impulsive effects.J. Franklin Inst. 348 (2011), 2607-2624. Zbl 1266.34044, MR 2845341, 10.1016/j.jfranklin.2011.08.003
Reference: [3] Bai, L., Dai, B.: Existence and multiplicity of solutions for an impulsive boundary value problem with a parameter via critical point theory.Math. Comput. Modelling 53 (2011), 1844-1855. Zbl 1219.34039, MR 2782888, 10.1016/j.mcm.2011.01.006
Reference: [4] Brézis, H., Nirenberg, L.: Remarks on finding critical points.Commun. Pure Appl. Math. 44 (1991), 939-963. MR 1127041, 10.1002/cpa.3160440808
Reference: [5] Dai, B., Su, H., Hu, D.: Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse.Nonlinear Anal., Theory Methods Appl. 70 (2009), 126-134. Zbl 1166.34043, MR 2468223
Reference: [6] Guan, Z.-H., Chen, G., Ueta, T.: On impulsive control of a periodically forced chaotic pendulum system.IEEE Trans. Autom. Control 45 (2000), 1724-1727. Zbl 0990.93105, MR 1791705, 10.1109/9.880633
Reference: [7] Han, X., Zhang, H.: Periodic and homoclinic solutions generated by impulses for asymptotically linear and sublinear Hamiltonian system.J. Comput. Appl. Math. 235 (2011), 1531-1541. Zbl 1211.34008, MR 2728109, 10.1016/j.cam.2010.08.040
Reference: [8] Lakmeche, A., Arino, O.: Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment.Dyn. Contin. Discrete Impulsive Syst. 7 (2000), 265-287. Zbl 1011.34031, MR 1744966
Reference: [9] Lakshmikantham, V., Baĭnov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations.Series in Modern Applied Mathematics 6 World Scientific, Singapore (1989). MR 1082551
Reference: [10] Li, X., Wu, X., Wu, K.: On a class of damped vibration problems with super-quadratic potentials.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 135-142. Zbl 1186.34056, MR 2574925, 10.1016/j.na.2009.06.044
Reference: [11] Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems.Applied Mathematical Sciences 74 Springer, New York (1989). Zbl 0676.58017, MR 0982267, 10.1007/978-1-4757-2061-7
Reference: [12] Nieto, J. J.: Periodic boundary value problems for first-order impulsive ordinary differential equations.Nonlinear Anal., Theory Methods Appl. 51 (2002), 1223-1232. Zbl 1015.34010, MR 1926625, 10.1016/S0362-546X(01)00889-6
Reference: [13] Nieto, J. J.: Variational formulation of a damped Dirichlet impulsive problem.Appl. Math. Lett. 23 (2010), 940-942. Zbl 1197.34041, MR 2651478, 10.1016/j.aml.2010.04.015
Reference: [14] Nieto, J. J., Rodríguez-López, R.: Hybrid metric dynamical systems with impulses.Nonlinear Anal., Theory Methods Appl. 64 (2006), 368-380. Zbl 1094.34007, MR 2188464, 10.1016/j.na.2005.05.068
Reference: [15] Nieto, J. J., Rodríguez-López, R.: New comparison results for impulsive integro-differential equations and applications.J. Math. Anal. Appl. 328 (2007), 1343-1368. Zbl 1113.45007, MR 2290058, 10.1016/j.jmaa.2006.06.029
Reference: [16] Samoĭlenko, A. M., Perestyuk, N. A.: Impulsive Differential Equations. Transl. from the Russian by Yury Chapovsky.World Scientific Series on Nonlinear Science, Series A 14 World Scientific, Singapore (1995). Zbl 0837.34003, MR 1355787
Reference: [17] Sun, J., Chen, H., Nieto, J. J., Otero-Novoa, M.: The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 4575-4586. Zbl 1198.34036, MR 2639205, 10.1016/j.na.2010.02.034
Reference: [18] Tian, Y., Ge, W.: Applications of variational methods to boundary-value problem for impulsive differential equations.Proc. Edinb. Math. Soc., II. Ser. 51 (2008), 509-527. Zbl 1163.34015, MR 2465922, 10.1017/S0013091506001532
Reference: [19] Tian, Y., Ge, W.: Variational methods to Sturm-Liouville boundary value problem for impulsive differential equations.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 277-287. Zbl 1191.34038, MR 2574937, 10.1016/j.na.2009.06.051
Reference: [20] Wang, L., Ge, W., Pei, M.: Infinitely many solutions of a second-order $p$-Laplacian problem with impulsive condition.Appl. Math., Praha 55 (2010), 405-418. Zbl 1224.34091, MR 2737720, 10.1007/s10492-010-0015-7
Reference: [21] Wu, X., Chen, J.: Existence theorems of periodic solutions for a class of damped vibration problems.Appl. Math. Comput. 207 (2009), 230-235. Zbl 1166.34316, MR 2492737, 10.1016/j.amc.2008.10.020
Reference: [22] Wu, X., Chen, S., Teng, K.: On variational methods for a class of damped vibration problems.Nonlinear Anal., Theory Methods Appl. 68 (2008), 1432-1441. Zbl 1141.34011, MR 2388824, 10.1016/j.na.2006.12.043
Reference: [23] Wu, X., Wang, S.: On a class of damped vibration problems with obstacles.Nonlinear Anal., Real World Appl. 11 (2010), 2973-2988. Zbl 1202.34082, MR 2661960
Reference: [24] Wu, X., Zhou, J.: On a class of forced vibration problems with obstacles.J. Math. Anal. Appl. 337 (2008), 1053-1063. Zbl 1143.34028, MR 2386356, 10.1016/j.jmaa.2007.04.036
Reference: [25] Xiao, J., Nieto, J. J.: Variational approach to some damped Dirichlet nonlinear impulsive differential equations.J. Franklin Inst. 348 (2011), 369-377. Zbl 1228.34048, MR 2771846, 10.1016/j.jfranklin.2010.12.003
Reference: [26] Zhao, X., Ge, W.: Some results for fractional impulsive boundary value problems on infinite intervals.Appl. Math., Praha 56 (2011), 371-387. Zbl 1240.26011, MR 2833167, 10.1007/s10492-011-0021-4
Reference: [27] Zhou, J., Li, Y.: Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects.Nonlinear Anal., Theory Methods Appl. 71 (2009), 2856-2865. Zbl 1175.34035, MR 2532812, 10.1016/j.na.2009.01.140
Reference: [28] Zhou, J., Li, Y.: Existence of solutions for a class of second-order Hamiltonian systems with impulsive effects.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 1594-1603. Zbl 1193.34057, MR 2577560, 10.1016/j.na.2009.08.041
.

Files

Files Size Format View
AplMat_59-2014-2_2.pdf 305.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo