Previous |  Up |  Next

Article

Keywords:
impulsive problem; damped vibration problem; variational method; critical point
Summary:
In this paper, a class of damped vibration problems with impulsive effects is considered. An existence result is obtained by using the variational method and the critical point theorem due to Brezis and Nirenberg. The obtained result is also valid and new for the corresponding second-order impulsive Hamiltonian system. Finally, an example is presented to illustrate the feasibility and effectiveness of the result.
References:
[1] Agarwal, R. P., O'Regan, D.: A multiplicity result for second order impulsive differential equations via the Leggett Williams fixed point theorem. Appl. Math. Comput. 161 (2005), 433-439. DOI 10.1016/j.amc.2003.12.096 | MR 2112416 | Zbl 1070.34042
[2] Bai, L., Dai, B.: An application of variational method to a class of Dirichlet boundary value problems with impulsive effects. J. Franklin Inst. 348 (2011), 2607-2624. DOI 10.1016/j.jfranklin.2011.08.003 | MR 2845341 | Zbl 1266.34044
[3] Bai, L., Dai, B.: Existence and multiplicity of solutions for an impulsive boundary value problem with a parameter via critical point theory. Math. Comput. Modelling 53 (2011), 1844-1855. DOI 10.1016/j.mcm.2011.01.006 | MR 2782888 | Zbl 1219.34039
[4] Brézis, H., Nirenberg, L.: Remarks on finding critical points. Commun. Pure Appl. Math. 44 (1991), 939-963. DOI 10.1002/cpa.3160440808 | MR 1127041
[5] Dai, B., Su, H., Hu, D.: Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse. Nonlinear Anal., Theory Methods Appl. 70 (2009), 126-134. MR 2468223 | Zbl 1166.34043
[6] Guan, Z.-H., Chen, G., Ueta, T.: On impulsive control of a periodically forced chaotic pendulum system. IEEE Trans. Autom. Control 45 (2000), 1724-1727. DOI 10.1109/9.880633 | MR 1791705 | Zbl 0990.93105
[7] Han, X., Zhang, H.: Periodic and homoclinic solutions generated by impulses for asymptotically linear and sublinear Hamiltonian system. J. Comput. Appl. Math. 235 (2011), 1531-1541. DOI 10.1016/j.cam.2010.08.040 | MR 2728109 | Zbl 1211.34008
[8] Lakmeche, A., Arino, O.: Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment. Dyn. Contin. Discrete Impulsive Syst. 7 (2000), 265-287. MR 1744966 | Zbl 1011.34031
[9] Lakshmikantham, V., Baĭnov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations. Series in Modern Applied Mathematics 6 World Scientific, Singapore (1989). MR 1082551
[10] Li, X., Wu, X., Wu, K.: On a class of damped vibration problems with super-quadratic potentials. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 135-142. DOI 10.1016/j.na.2009.06.044 | MR 2574925 | Zbl 1186.34056
[11] Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Applied Mathematical Sciences 74 Springer, New York (1989). DOI 10.1007/978-1-4757-2061-7 | MR 0982267 | Zbl 0676.58017
[12] Nieto, J. J.: Periodic boundary value problems for first-order impulsive ordinary differential equations. Nonlinear Anal., Theory Methods Appl. 51 (2002), 1223-1232. DOI 10.1016/S0362-546X(01)00889-6 | MR 1926625 | Zbl 1015.34010
[13] Nieto, J. J.: Variational formulation of a damped Dirichlet impulsive problem. Appl. Math. Lett. 23 (2010), 940-942. DOI 10.1016/j.aml.2010.04.015 | MR 2651478 | Zbl 1197.34041
[14] Nieto, J. J., Rodríguez-López, R.: Hybrid metric dynamical systems with impulses. Nonlinear Anal., Theory Methods Appl. 64 (2006), 368-380. DOI 10.1016/j.na.2005.05.068 | MR 2188464 | Zbl 1094.34007
[15] Nieto, J. J., Rodríguez-López, R.: New comparison results for impulsive integro-differential equations and applications. J. Math. Anal. Appl. 328 (2007), 1343-1368. DOI 10.1016/j.jmaa.2006.06.029 | MR 2290058 | Zbl 1113.45007
[16] Samoĭlenko, A. M., Perestyuk, N. A.: Impulsive Differential Equations. Transl. from the Russian by Yury Chapovsky. World Scientific Series on Nonlinear Science, Series A 14 World Scientific, Singapore (1995). MR 1355787 | Zbl 0837.34003
[17] Sun, J., Chen, H., Nieto, J. J., Otero-Novoa, M.: The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 4575-4586. DOI 10.1016/j.na.2010.02.034 | MR 2639205 | Zbl 1198.34036
[18] Tian, Y., Ge, W.: Applications of variational methods to boundary-value problem for impulsive differential equations. Proc. Edinb. Math. Soc., II. Ser. 51 (2008), 509-527. MR 2465922 | Zbl 1163.34015
[19] Tian, Y., Ge, W.: Variational methods to Sturm-Liouville boundary value problem for impulsive differential equations. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 277-287. DOI 10.1016/j.na.2009.06.051 | MR 2574937 | Zbl 1191.34038
[20] Wang, L., Ge, W., Pei, M.: Infinitely many solutions of a second-order $p$-Laplacian problem with impulsive condition. Appl. Math., Praha 55 (2010), 405-418. DOI 10.1007/s10492-010-0015-7 | MR 2737720 | Zbl 1224.34091
[21] Wu, X., Chen, J.: Existence theorems of periodic solutions for a class of damped vibration problems. Appl. Math. Comput. 207 (2009), 230-235. DOI 10.1016/j.amc.2008.10.020 | MR 2492737 | Zbl 1166.34316
[22] Wu, X., Chen, S., Teng, K.: On variational methods for a class of damped vibration problems. Nonlinear Anal., Theory Methods Appl. 68 (2008), 1432-1441. DOI 10.1016/j.na.2006.12.043 | MR 2388824 | Zbl 1141.34011
[23] Wu, X., Wang, S.: On a class of damped vibration problems with obstacles. Nonlinear Anal., Real World Appl. 11 (2010), 2973-2988. MR 2661960 | Zbl 1202.34082
[24] Wu, X., Zhou, J.: On a class of forced vibration problems with obstacles. J. Math. Anal. Appl. 337 (2008), 1053-1063. DOI 10.1016/j.jmaa.2007.04.036 | MR 2386356 | Zbl 1143.34028
[25] Xiao, J., Nieto, J. J.: Variational approach to some damped Dirichlet nonlinear impulsive differential equations. J. Franklin Inst. 348 (2011), 369-377. DOI 10.1016/j.jfranklin.2010.12.003 | MR 2771846 | Zbl 1228.34048
[26] Zhao, X., Ge, W.: Some results for fractional impulsive boundary value problems on infinite intervals. Appl. Math., Praha 56 (2011), 371-387. DOI 10.1007/s10492-011-0021-4 | MR 2833167 | Zbl 1240.26011
[27] Zhou, J., Li, Y.: Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects. Nonlinear Anal., Theory Methods Appl. 71 (2009), 2856-2865. DOI 10.1016/j.na.2009.01.140 | MR 2532812 | Zbl 1175.34035
[28] Zhou, J., Li, Y.: Existence of solutions for a class of second-order Hamiltonian systems with impulsive effects. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 1594-1603. DOI 10.1016/j.na.2009.08.041 | MR 2577560 | Zbl 1193.34057
Partner of
EuDML logo