Previous |  Up |  Next

Article

Title: Almost periodic solutions for a class of discrete systems with Allee-effect (English)
Author: Li, Yongkun
Author: Yang, Li
Author: Wu, Wanqin
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 2
Year: 2014
Pages: 191-203
Summary lang: English
.
Category: math
.
Summary: In this paper, using Mawhin's continuation theorem of the coincidence degree theory, we obtain some sufficient conditions for the existence of positive almost periodic solutions for a class of delay discrete models with Allee-effect. (English)
Keyword: discrete system
Keyword: coincidence degree
Keyword: almost periodic solution
Keyword: Allee-effect
MSC: 34K14
MSC: 92D25
idZBL: Zbl 06362221
idMR: MR3183472
DOI: 10.1007/s10492-014-0049-3
.
Date available: 2014-03-20T08:21:43Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143629
.
Reference: [1] Agarwal, R. P., Wong, P. J. Y.: Advanced Topics in Difference Equations.Mathematics and its Applications 404 Kluwer Academic Publishers, Dordrecht (1997). Zbl 0878.39001, MR 1447437
Reference: [2] Alzabut, J. O., Stamov, G. T., Sermutlu, E.: Positive almost periodic solutions for a delay logarithmic population model.Math. Comput. Modelling 53 (2011), 161-167. Zbl 1211.34084, MR 2739253, 10.1016/j.mcm.2010.07.029
Reference: [3] Cheban, D., Mammana, C.: Invariant manifolds, global attractors and almost periodic solutions of nonautonomous difference equations.Nonlinear Anal., Theory Methods Appl. 56 (2004), 465-484. Zbl 1065.39026, MR 2035322, 10.1016/j.na.2003.09.009
Reference: [4] Chen, Y.: Periodic solutions of a delayed, periodic logistic equation.Appl. Math. Lett. 16 (2003), 1047-1051. Zbl 1118.34327, MR 2013071, 10.1016/S0893-9659(03)90093-0
Reference: [5] Chen, W., Liu, B.: Positive almost periodic solution for a class of Nicholson's blowflies model with multiple time-varying delays.J. Comput. Appl. Math. 235 (2011), 2090-2097. Zbl 1207.92042, MR 2763127, 10.1016/j.cam.2010.10.007
Reference: [6] Chen, F., Xie, X., Chen, X.: Permanence and global attractivity of a delayed periodic logistic equation.Appl. Math. Comput. 177 (2006), 118-127. Zbl 1101.34058, MR 2234504, 10.1016/j.amc.2005.10.040
Reference: [7] Chen, L., Zhao, H.: Global stability of almost periodic solution of shunting inhibitory cellular neural networks with variable coefficients.Chaos Solitons Fractals 35 (2008), 351-357. Zbl 1140.34425, MR 2357008, 10.1016/j.chaos.2006.05.057
Reference: [8] Cheng, S. S., Patula, W. T.: An existence theorem for a nonlinear difference equation.Nonlinear Anal., Theory Methods Appl. 20 (1993), 193-203. Zbl 0774.39001, MR 1202198, 10.1016/0362-546X(93)90157-N
Reference: [9] Ding, X., Lu, C.: Existence of positive periodic solution for ratio-dependent $N$-species difference system.Appl. Math. Modelling 33 (2009), 2748-2756. Zbl 1205.39001, MR 2502144, 10.1016/j.apm.2008.08.008
Reference: [10] Fan, M., Wang, K.: Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system.Math. Comput. Modelling 35 (2002), 951-961. Zbl 1050.39022, MR 1910673, 10.1016/S0895-7177(02)00062-6
Reference: [11] Freedman, H. I.: Deterministic Mathematical Models in Population Ecology.Monographs and Textbooks in Pure and Applied Mathematics 57 Marcel Dekker, New York (1980). Zbl 0448.92023, MR 0586941
Reference: [12] Gaines, R. E., Mawhin, J. L.: Coincidence Degree, and Nonlinear Differential Equations.Lecture Notes in Mathematics 568 Springer, Berlin (1977). Zbl 0339.47031, MR 0637067, 10.1007/BFb0089537
Reference: [13] Huo, H., Li, W.: Existence and global stability of periodic solutions of a discrete predator-prey system with delays.Appl. Math. Comput. 153 (2004), 337-351. Zbl 1043.92038, MR 2064661, 10.1016/S0096-3003(03)00635-0
Reference: [14] Li, Y., Fan, X.: Existence and globally exponential stability of almost periodic solution for Cohen-Grossberg BAM neural networks with variable coefficients.Appl. Math. Modelling 33 (2009), 2114-2120. Zbl 1205.34086, MR 2488268, 10.1016/j.apm.2008.05.013
Reference: [15] Li, Y., Lu, L.: Positive periodic solutions of discrete $n$-species food-chain systems.Appl. Math. Comput. 167 (2005), 324-344. Zbl 1087.39012, MR 2170919, 10.1016/j.amc.2004.06.082
Reference: [16] Li, Y., Zhang, T., Ye, Y.: On the existence and stability of a unique almost periodic sequence solution in discrete predator-prey models with time delays.Appl. Math. Modelling 35 (2011), 5448-5459. Zbl 1228.39012, MR 2806184, 10.1016/j.apm.2011.04.034
Reference: [17] Meng, X., Chen, L.: Almost periodic solution of non-autonomous Lotka-Volterra predator-prey dispersal system with delays.J. Theoret. Biol. 243 (2006), 562-574. MR 2306349, 10.1016/j.jtbi.2006.07.010
Reference: [18] Meng, X., Jiao, J., Chen, L.: Global dynamics behaviors for a nonautonomous LotkaVolterra almost periodic dispersal system with delays.Nonlinear Anal., Theory Methods Appl. 68 (2008), 3633-3645. MR 2416071, 10.1016/j.na.2007.04.006
Reference: [19] Murray, J. D.: Mathematical Biology.Biomathematics 19 Springer, Berlin (1989). Zbl 0682.92001, MR 1007836
Reference: [20] Sun, Y. G., Saker, S. H.: Existence of positive periodic solutions of nonlinear discrete model exhibiting the Allee effect.Appl. Math. Comput. 168 (2005), 1086-1097. Zbl 1087.39015, MR 2171764, 10.1016/j.amc.2004.10.005
Reference: [21] Teng, Z.: Persistence and stability in general nonautonomous single-species Kolmogorov systems with delays.Nonlinear Anal., Real World Appl. 8 (2007), 230-248. Zbl 1119.34056, MR 2268081
Reference: [22] Wu, W., Ye, Y.: Existence and stability of almost periodic solutions of nonautonomous competitive systems with weak Allee effect and delays.Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 3993-4002. Zbl 1221.34185, MR 2522901, 10.1016/j.cnsns.2009.02.022
Reference: [23] Xie, Y., Li, X.: Almost periodic solutions of single population model with hereditary effects.Appl. Math. Comput. 203 (2008), 690-697. Zbl 1166.34327, MR 2458985, 10.1016/j.amc.2008.05.085
Reference: [24] Yan, J., Zhao, A., Yan, W.: Existence and global attractivity of a periodic solution for an impulsive delay differential equation with Allee effect.J. Math. Anal. Appl. 309 (2005), 489-504. Zbl 1086.34066, MR 2154131, 10.1016/j.jmaa.2004.09.038
Reference: [25] Yang, X.: The persistence of a general nonautonomous single-species Kolmogorov system with delays.Nonlinear Anal., Theory Methods Appl. 70 (2009), 1422-1429. Zbl 1161.34355, MR 2474929, 10.1016/j.na.2008.02.023
Reference: [26] Zhang, S., Zheng, G.: Almost periodic solutions of delay difference systems.Appl. Math. Comput. 131 (2002), 497-516. Zbl 1029.39011, MR 1920242, 10.1016/S0096-3003(01)00165-5
Reference: [27] Zhang, W., Zhu, D., Bi, P.: Multiple positive periodic solutions of a delayed discrete predator-prey system with type IV functional responses.Appl. Math. Lett. 20 (2007), 1031-1038. Zbl 1142.39015, MR 2344777, 10.1016/j.aml.2006.11.005
Reference: [28] Zhu, L., Li, Y.: Positive periodic solutions of higher-dimensional functional difference equations with a parameter.J. Math. Anal. Appl. 290 (2004), 654-664. Zbl 1042.39005, MR 2033049, 10.1016/j.jmaa.2003.10.014
.

Files

Files Size Format View
AplMat_59-2014-2_5.pdf 258.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo