Previous |  Up |  Next

Article

Title: Weaker convergence conditions for the secant method (English)
Author: Argyros, Ioannis K.
Author: Hilout, Saïd
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 3
Year: 2014
Pages: 265-284
Summary lang: English
.
Category: math
.
Summary: We use tighter majorizing sequences than in earlier studies to provide a semilocal convergence analysis for the secant method. Our sufficient convergence conditions are also weaker. Numerical examples are provided where earlier conditions do not hold but for which the new conditions are satisfied. (English)
Keyword: semilocal convergence
Keyword: secant method
Keyword: Banach space
Keyword: majorizing sequence
Keyword: Hölder condition
Keyword: divided difference
Keyword: Fréchet-derivative
MSC: 49M15
MSC: 65B05
MSC: 65G99
MSC: 65H10
MSC: 65J15
MSC: 65N30
idZBL: Zbl 06362226
idMR: MR3232630
DOI: 10.1007/s10492-014-0054-6
.
Date available: 2014-05-20T07:33:03Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143772
.
Reference: [1] Argyros, I. K.: A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space.J. Math. Anal. Appl. 298 (2004), 374-397. Zbl 1061.47052, MR 2086964, 10.1016/j.jmaa.2004.04.008
Reference: [2] Argyros, I. K.: Convergence and Applications of Newton-Type Iterations.Springer New York (2008). Zbl 1153.65057, MR 2428779
Reference: [3] Argyros, I. K.: New sufficient convergence conditions for the secant method.Czech. Math. J. 55 (2005), 175-187. Zbl 1081.65043, MR 2121665, 10.1007/s10587-005-0013-1
Reference: [4] Argyros, I. K.: On the Newton-Kantorovich hypothesis for solving equations.J. Comput. Appl. Math. 169 (2004), 315-332. Zbl 1055.65066, MR 2072881, 10.1016/j.cam.2004.01.029
Reference: [5] Argyros, I. K., Cho, Y. J., Hilout, S.: Numerical Methods for Equations and Its Applications.CRC Press Boca Raton (2012). Zbl 1254.65068, MR 2964315
Reference: [6] Argyros, I. K., Hilout, S.: Computational Methods in Nonlinear Analysis. Efficient Algorithms, Fixed Point Theory and Applications.World Scientific Hackensack (2013). Zbl 1279.65062, MR 3134688
Reference: [7] Argyros, I. K., Hilout, S.: Convergence conditions for secant-type methods.Czech. Math. J. 60 (2010), 253-272. Zbl 1224.65141, MR 2595087, 10.1007/s10587-010-0014-6
Reference: [8] Argyros, I. K., Hilout, S.: Semilocal convergence conditions for the Secant method using recurrent functions.Rev. Anal. Numér. Théor. Approx. 40 (2011), 107-119. Zbl 1289.65136, MR 3059816
Reference: [9] Argyros, I. K., Hilout, S.: Weaker conditions for the convergence of Newton's method.J. Complexity 28 (2012), 364-387. Zbl 1245.65058, MR 2914733, 10.1016/j.jco.2011.12.003
Reference: [10] Jr., W. E. Bosarge, Falb, P. L.: A multipoint method of third order.J. Optimization Theory Appl. 4 (1969), 155-166. Zbl 0172.18703, MR 0248581
Reference: [11] Jr., J. E. Dennis: Toward a Unified Convergence Theory for Newton-Like Methods.Nonlinear Functional Analysis and Applications, Proc. Adv. Sem. Math. Res. Center, Univ. Wisconsin 1970 L. B. Rall Publication No. 26 of the Mathematics Research Center the University of Wisconsin Academic Press, New York (1971), 425-472. Zbl 0276.65029, MR 0278556
Reference: [12] Hernández, M. A., Rubio, M. J., Ezquerro, J. A.: Secant-like methods for solving nonlinear integral equations of the Hammerstein type.J. Comput. Appl. Math. 115 (2000), 245-254. MR 1747223, 10.1016/S0377-0427(99)00116-8
Reference: [13] Hernández, M. A., Rubio, M. J., Ezquerro, J. A.: Solving a special case of conservative problems by secant-like methods.Appl. Math. Comput. 169 (2005), 926-942. Zbl 1080.65044, MR 2174693, 10.1016/j.amc.2004.09.070
Reference: [14] Kantorovich, L. V., Akilov, G. P.: Functional Analysis.Pergamon Press. Transl. from the Russian by Howard L. Silcock. 2nd ed Oxford (1982). Zbl 0484.46003, MR 0664597
Reference: [15] Laasonen, P.: Ein überquadratisch konvergenter iterativer Algorithmus.Ann. Acad. Sci. Fenn., Ser. A I 450 (1969), 10 German. Zbl 0193.11704, MR 0255047
Reference: [16] Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables.Computer Science and Applied Mathematics Academic Press, New York (1970). Zbl 0241.65046, MR 0273810
Reference: [17] Potra, F.-A.: On the convergence of a class of Newton-like methods.Iterative Solution of Nonlinear Systems of Equations, Proc. Meeting, Oberwolfach 1982 Lecture Notes in Mathematics 953 Springer, Berlin (1982), 125-137. Zbl 0507.65020, MR 0678615
Reference: [18] Potra, F.-A.: Sharp error bounds for a class of Newton-like methods.Libertas Math. 5 (1985), 71-84. Zbl 0581.47050, MR 0816258
Reference: [19] Potra, F.-A., Pták, V.: Nondiscrete Induction and Iterative Processes.Research Notes in Mathematics 103 Pitman Advanced Publishing Program, Boston (1984). Zbl 0549.41001, MR 0754338
Reference: [20] Potra, F.-A., Pták, V.: Sharp error bounds for Newton's process.Numer. Math. 34 (1980), 63-72. Zbl 0434.65034, MR 0560794, 10.1007/BF01463998
Reference: [21] Proinov, P. D.: New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems.J. Complexity 26 (2010), 3-42. Zbl 1185.65095, MR 2574570, 10.1016/j.jco.2009.05.001
Reference: [22] Schmidt, J. W.: Untere Fehlerschranken für Regula-Falsi-Verfahren.Period. Math. Hung. 9 (1978), 241-247 German. Zbl 0401.65036, MR 0494896, 10.1007/BF02018090
Reference: [23] Wolfe, M. A.: Extended iterative methods for the solution of operator equations.Numer. Math. 31 (1978), 153-174. Zbl 0375.65030, MR 0509672, 10.1007/BF01397473
Reference: [24] Yamamoto, T.: A convergence theorem for Newton-like methods in Banach spaces.Numer. Math. 51 (1987), 545-557. Zbl 0633.65049, MR 0910864, 10.1007/BF01400355
.

Files

Files Size Format View
AplMat_59-2014-3_3.pdf 306.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo