Title:
|
On some classes of spaces with the $D$-property (English) |
Author:
|
Martínez, Juan Carlos |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
55 |
Issue:
|
2 |
Year:
|
2014 |
Pages:
|
247-256 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We shall prove that under CH every regular meta-Lindelöf $P$-space which is locally $D$ has the $D$-property. In addition, we shall prove that a regular submeta-Lindelöf $P$-space is $D$ if it is locally $D$ and has locally extent at most $\omega_1$. Moreover, these results can be extended from the class of locally $D$-spaces to the wider class of $\mathbb D$-scattered spaces. Also, we shall give a direct proof (without using topological games) of the result shown by Peng [On spaces which are D, linearly D and transitively D, Topology Appl. 157 (2010), 378--384] which states that every weak $\overline{\theta}$-refinable $\mathbb D$-scattered space is $D$. (English) |
Keyword:
|
property $D$ |
Keyword:
|
meta-Lindelöf |
Keyword:
|
weak $\overline{\theta}$-refinable |
Keyword:
|
$P$-space |
Keyword:
|
scattered space |
MSC:
|
54A35 |
MSC:
|
54D20 |
MSC:
|
54G10 |
idZBL:
|
Zbl 06391541 |
idMR:
|
MR3193929 |
. |
Date available:
|
2014-06-07T15:41:13Z |
Last updated:
|
2016-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143805 |
. |
Reference:
|
[1] Arhangel'skii A.V.: D-spaces and finite unions.Proc. Amer. Math. Soc. 132 (2004), 2163–2170. Zbl 1045.54009, MR 2053991, 10.1090/S0002-9939-04-07336-8 |
Reference:
|
[2] Arhangel'skii A.V., Buzyakova R.Z.: Addition theorems and D-spaces.Comment. Math. Univ. Carolin. 43 (2002), 653–663. Zbl 1090.54017, MR 2045787 |
Reference:
|
[3] Barr M., Kennison J.F., Raphael R.: On productively Lindelöf spaces.Sci. Math. Jpn. 65 (2007), 319–332. Zbl 1146.54013, MR 2328213 |
Reference:
|
[4] Burke D.K.: Covering properties.in Handbook of Set-Theoretic Topology, edited by K. Kunen and J.E. Vaughan, North-Holland, Elsevier, Amsterdam, 1984, pp. 347–422. Zbl 0569.54022, MR 0776628 |
Reference:
|
[5] Buzyakova R.Z: On D-property of strong $\Sigma$-spaces.Comment. Math. Univ. Carolin. 43 (2002), 493–495. Zbl 1090.54018, MR 1920524 |
Reference:
|
[6] van Douwen E.K., Lutzer D.: A note on paracompactness in generalized ordered spaces.Proc. Amer. Math. Soc. 125 (1997), 1237–1245. Zbl 0885.54023, MR 1396999, 10.1090/S0002-9939-97-03902-6 |
Reference:
|
[7] van Douwen E.K., Pfeffer W.F.: Some properties of the Sorgenfrey line and related spaces.Pacific J. Math. 81 (1979), 371–377. Zbl 0409.54011, MR 0547605, 10.2140/pjm.1979.81.371 |
Reference:
|
[8] van Douwen E.K., Wicke H.H.: A real, weird topology on the reals.Houston J. Math. 3 (1977), 141–152. Zbl 0345.54036, MR 0433414 |
Reference:
|
[9] Fleissner W.G, Stanley A.M.: D-spaces.Topology Appl. 114 (2001), 261–271. Zbl 0983.54024, MR 1838325, 10.1016/S0166-8641(00)00042-0 |
Reference:
|
[10] Gillman L., Jerison M.: Rings of Continuous Functions.Graduate Texts in Math., 43, Springer, Berlin-Heidelberg-New York, 1976. Zbl 0327.46040, MR 0407579 |
Reference:
|
[11] Gruenhage G.: A survey of D-spaces.Contemporary Math. 533 (2011), 13–28. Zbl 1217.54025, MR 2777743, 10.1090/conm/533/10502 |
Reference:
|
[12] Martínez J. C., Soukup L.: The D-property in unions of scattered spaces.Topology Appl. 156 (2009), 3086-3090. Zbl 1178.54009, MR 2556068, 10.1016/j.topol.2009.03.047 |
Reference:
|
[13] Martínez J.C.: On finite unions and finite products with the D-property.Topology Appl. 158 (2011), 223–228. Zbl 1206.54022, MR 2739893 |
Reference:
|
[14] Mashburn J.D.: A note on irreducibility and weak covering properties.Topology Proc. 9 (1984), 339–352. Zbl 0577.54017, MR 0828991 |
Reference:
|
[15] Peng L.-X.: On finite unions of certain D-spaces.Topology Appl. 155 (2008), 522–526. Zbl 1143.54013, MR 2388953, 10.1016/j.topol.2007.11.002 |
Reference:
|
[16] Peng L.-X.: On spaces which are D, linearly D and transitively D.Topology Appl. 157 (2010), 378–384. Zbl 1179.54035, MR 2563288 |
Reference:
|
[17] Peng L.-X.: The D-property which relates to certain covering properties.Topology Appl. 159 (2012), 869–876. Zbl 1247.54033, MR 2868887, 10.1016/j.topol.2011.12.004 |
Reference:
|
[18] Smith J.C.: Properties of weak $\overline{\theta}$-refinable spaces.Proc. Amer. Math. Soc. 53 (1975), 511–517. Zbl 0338.54013, MR 0380731 |
Reference:
|
[19] Soukup D.T., Szeptycki P.J.: A counterexample in the theory of D-spaces.Topology Appl. 159 (2012), 2669–2678. MR 2923437, 10.1016/j.topol.2012.03.016 |
Reference:
|
[20] Zhang H., Shi W.-X.: A note on D-spaces.Topology Appl. 159 (2012), 248–252. Zbl 1244.54058, MR 2852969, 10.1016/j.topol.2011.09.006 |
. |