Previous |  Up |  Next

Article

Title: On some classes of spaces with the $D$-property (English)
Author: Martínez, Juan Carlos
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 2
Year: 2014
Pages: 247-256
Summary lang: English
.
Category: math
.
Summary: We shall prove that under CH every regular meta-Lindelöf $P$-space which is locally $D$ has the $D$-property. In addition, we shall prove that a regular submeta-Lindelöf $P$-space is $D$ if it is locally $D$ and has locally extent at most $\omega_1$. Moreover, these results can be extended from the class of locally $D$-spaces to the wider class of $\mathbb D$-scattered spaces. Also, we shall give a direct proof (without using topological games) of the result shown by Peng [On spaces which are D, linearly D and transitively D, Topology Appl. 157 (2010), 378--384] which states that every weak $\overline{\theta}$-refinable $\mathbb D$-scattered space is $D$. (English)
Keyword: property $D$
Keyword: meta-Lindelöf
Keyword: weak $\overline{\theta}$-refinable
Keyword: $P$-space
Keyword: scattered space
MSC: 54A35
MSC: 54D20
MSC: 54G10
idZBL: Zbl 06391541
idMR: MR3193929
.
Date available: 2014-06-07T15:41:13Z
Last updated: 2016-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/143805
.
Reference: [1] Arhangel'skii A.V.: D-spaces and finite unions.Proc. Amer. Math. Soc. 132 (2004), 2163–2170. Zbl 1045.54009, MR 2053991, 10.1090/S0002-9939-04-07336-8
Reference: [2] Arhangel'skii A.V., Buzyakova R.Z.: Addition theorems and D-spaces.Comment. Math. Univ. Carolin. 43 (2002), 653–663. Zbl 1090.54017, MR 2045787
Reference: [3] Barr M., Kennison J.F., Raphael R.: On productively Lindelöf spaces.Sci. Math. Jpn. 65 (2007), 319–332. Zbl 1146.54013, MR 2328213
Reference: [4] Burke D.K.: Covering properties.in Handbook of Set-Theoretic Topology, edited by K. Kunen and J.E. Vaughan, North-Holland, Elsevier, Amsterdam, 1984, pp. 347–422. Zbl 0569.54022, MR 0776628
Reference: [5] Buzyakova R.Z: On D-property of strong $\Sigma$-spaces.Comment. Math. Univ. Carolin. 43 (2002), 493–495. Zbl 1090.54018, MR 1920524
Reference: [6] van Douwen E.K., Lutzer D.: A note on paracompactness in generalized ordered spaces.Proc. Amer. Math. Soc. 125 (1997), 1237–1245. Zbl 0885.54023, MR 1396999, 10.1090/S0002-9939-97-03902-6
Reference: [7] van Douwen E.K., Pfeffer W.F.: Some properties of the Sorgenfrey line and related spaces.Pacific J. Math. 81 (1979), 371–377. Zbl 0409.54011, MR 0547605, 10.2140/pjm.1979.81.371
Reference: [8] van Douwen E.K., Wicke H.H.: A real, weird topology on the reals.Houston J. Math. 3 (1977), 141–152. Zbl 0345.54036, MR 0433414
Reference: [9] Fleissner W.G, Stanley A.M.: D-spaces.Topology Appl. 114 (2001), 261–271. Zbl 0983.54024, MR 1838325, 10.1016/S0166-8641(00)00042-0
Reference: [10] Gillman L., Jerison M.: Rings of Continuous Functions.Graduate Texts in Math., 43, Springer, Berlin-Heidelberg-New York, 1976. Zbl 0327.46040, MR 0407579
Reference: [11] Gruenhage G.: A survey of D-spaces.Contemporary Math. 533 (2011), 13–28. Zbl 1217.54025, MR 2777743, 10.1090/conm/533/10502
Reference: [12] Martínez J. C., Soukup L.: The D-property in unions of scattered spaces.Topology Appl. 156 (2009), 3086-3090. Zbl 1178.54009, MR 2556068, 10.1016/j.topol.2009.03.047
Reference: [13] Martínez J.C.: On finite unions and finite products with the D-property.Topology Appl. 158 (2011), 223–228. Zbl 1206.54022, MR 2739893
Reference: [14] Mashburn J.D.: A note on irreducibility and weak covering properties.Topology Proc. 9 (1984), 339–352. Zbl 0577.54017, MR 0828991
Reference: [15] Peng L.-X.: On finite unions of certain D-spaces.Topology Appl. 155 (2008), 522–526. Zbl 1143.54013, MR 2388953, 10.1016/j.topol.2007.11.002
Reference: [16] Peng L.-X.: On spaces which are D, linearly D and transitively D.Topology Appl. 157 (2010), 378–384. Zbl 1179.54035, MR 2563288
Reference: [17] Peng L.-X.: The D-property which relates to certain covering properties.Topology Appl. 159 (2012), 869–876. Zbl 1247.54033, MR 2868887, 10.1016/j.topol.2011.12.004
Reference: [18] Smith J.C.: Properties of weak $\overline{\theta}$-refinable spaces.Proc. Amer. Math. Soc. 53 (1975), 511–517. Zbl 0338.54013, MR 0380731
Reference: [19] Soukup D.T., Szeptycki P.J.: A counterexample in the theory of D-spaces.Topology Appl. 159 (2012), 2669–2678. MR 2923437, 10.1016/j.topol.2012.03.016
Reference: [20] Zhang H., Shi W.-X.: A note on D-spaces.Topology Appl. 159 (2012), 248–252. Zbl 1244.54058, MR 2852969, 10.1016/j.topol.2011.09.006
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-2_10.pdf 245.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo