Previous |  Up |  Next

Article

Title: One-dimensional model describing the non-linear viscoelastic response of materials (English)
Author: Bárta, Tomáš
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 2
Year: 2014
Pages: 227-246
Summary lang: English
.
Category: math
.
Summary: In this paper we consider a model of a one-dimensional body where strain depends on the history of stress. We show local existence for large data and global existence for small data of classical solutions and convergence of the displacement, strain and stress to zero for time going to infinity. (English)
Keyword: viscoelasticity
Keyword: integrodifferential equation
Keyword: classical solution
Keyword: global existence
Keyword: implicit constitutive relations
MSC: 35A09
MSC: 35M33
MSC: 45G10
MSC: 45K05
MSC: 74D10
MSC: 74H20
MSC: 74H40
idZBL: Zbl 06391540
idMR: MR3193928
.
Date available: 2014-06-07T15:39:30Z
Last updated: 2016-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/143804
.
Reference: [1] Bulíček M., Gwiazda P., Málek J., Świerczewska-Gwiazda A.: On unsteady flows of implicitly constituted incompressible fluids.SIAM J. Math. Anal. 44 (2012), no. 4, 2756–2801. Zbl 1256.35074, MR 3023393, 10.1137/110830289
Reference: [2] Dafermos C.M., Nohel J.A.: A nonlinear hyperbolic Volterra equation in viscoelasticity.. Contributions to analysis and geometry (Baltimore, Md., 1980), pp. 87–116, Johns Hopkins Univ. Press, Baltimore, Md., 1981. Zbl 0588.35016, MR 0648457
Reference: [3] Gripenberg G., Londen S.O., Staffans O.: Volterra integral and functional equations.Encyclopedia of Mathematics and its Applications, 34, Cambridge University Press, Cambridge, 1990. Zbl 1159.45001, MR 1050319
Reference: [4] Hrusa W.J.: A nonlinear functional-differential equation in Banach space with applications to materials with fading memory.Arch. Rational Mech. Anal. 84 (1984), no. 2, 99–137. Zbl 0544.73056, MR 0713121, 10.1007/BF00252129
Reference: [5] Hrusa W.J., Nohel J.A.: The Cauchy problem in one-dimensional nonlinear viscoelasticity.J. Differential Equations 59 (1985), no. 3, 388–412. Zbl 0535.35057, MR 0807854, 10.1016/0022-0396(85)90147-0
Reference: [6] Hrusa W.J., Renardy M.: A model equation for viscoelasticity with a strongly singular kernel.SIAM J. Math. Anal. 19 (1988), no. 2, 257–269. Zbl 0644.73041, MR 0930025, 10.1137/0519019
Reference: [7] MacCamy R.C.: A model for one-dimensional nonlinear viscoelasticity.Quart. Appl. Math. 37 (1977), 21–33. Zbl 0355.73041, MR 0478939
Reference: [8] Málek J.: Mathematical properties of flows of incompressible power-law-like fluids that are described by implicit constitutive relations.Electron. Trans. Numer. Anal. 31 (2008), 110–125. Zbl 1182.35182, MR 2569596
Reference: [9] Málek J., Průša P., Rajagopal K.R.: Generalizations of the Navier–Stokes fluid from a new perspective.Internat. J. Engrg. Sci. 48 (2010), no. 12, 1907–1924. Zbl 1231.76073, MR 2778752, 10.1016/j.ijengsci.2010.06.013
Reference: [10] Muliana A., Rajagopal K.R., Wineman A.S.: A new class of quasi-linear models for describing the nonlinear viscoelastic response of materials.Acta Mechanica (2013), 1–15.
Reference: [11] Průša V., Rajagopal K.R.: On implicit constitutive relations for materials with fading memory.Journal of Non-Newtonian Fluid Mechanics 181-182 (2012), 22–29. 10.1016/j.jnnfm.2012.06.004
Reference: [12] Rajagopal K.R.: On implicit constitutive theories.Appl. Math. 48 (2003), 279–319. Zbl 1097.76009, MR 1994378, 10.1023/A:1026062615145
Reference: [13] Renardy M., Hrusa W.J., Nohel J.A.: Mathematical Problems in Viscoelasticity.Pitman Monographs and Surveys in Pure and Applied Mathematics, 35, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987. Zbl 0719.73013, MR 0919738
Reference: [14] Staffans O.J.: On a nonlinear hyperbolic Volterra equation.SIAM J. Math. Anal. 11 (1980), no. 5, 793–812. Zbl 0464.45010, MR 0586908, 10.1137/0511071
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-2_9.pdf 291.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo