Previous |  Up |  Next

Article

Title: Quantum-graph vertex couplings: some old and new approximations (English)
Author: Manko, Stepan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 2
Year: 2014
Pages: 259-267
Summary lang: English
.
Category: math
.
Summary: In 1986 P. Šeba in the classic paper considered one-dimensional pseudo-Hamiltonians containing the first derivative of the Dirac delta function. Although the paper contained some inaccuracy, it was one of the starting points in approximating one-dimension self-adjoint couplings. In the present paper we develop the above results to the case of quantum systems with complex geometry. (English)
Keyword: quantum graph
Keyword: vertex coupling
Keyword: singularly scaled potential
MSC: 34B45
MSC: 34L40
MSC: 81Q35
idZBL: Zbl 06362257
idMR: MR3238838
DOI: 10.21136/MB.2014.143853
.
Date available: 2014-07-14T08:24:03Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143853
.
Reference: [1] Albeverio, S., Cacciapuoti, C., Finco, D.: Coupling in the singular limit of thin quantum waveguides.J. Math. Phys. 48 (2007), Article ID 032103, 21 pages. Zbl 1137.81330, MR 2314483, 10.1063/1.2710197
Reference: [2] Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics.AMS Chelsea, Providence (2005). Zbl 1078.81003, MR 2105735
Reference: [3] Albeverio, S., Koshmanenko, V., Kurasov, P., Nizhnik, L.: On approximations of rank one $\mathcal{H}_{-2}$-perturbations.Proc. Amer. Math. Soc. 131 (2003), 1443-1452. MR 1949874, 10.1090/S0002-9939-02-06694-7
Reference: [4] Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs.Mathematical Surveys and Monographs 186 American Mathematical Society, Providence (2013). MR 3013208
Reference: [5] Bollé, D., Gesztesy, F., Wilk, S. F. J.: A complete treatment of low-energy scattering in one dimension.J. Oper. Theory 13 (1985), 3-32. Zbl 0567.47008, MR 0768299
Reference: [6] Cacciapuoti, C., Exner, P.: Nontrivial edge coupling from a Dirichlet network squeezing: the case of a bent waveguide.J. Phys. A, Math. Theor. 40 (2007), F511--F523. Zbl 1136.81442, MR 2344437, 10.1088/1751-8113/40/26/F02
Reference: [7] Christiansen, P. L., Arnbak, H. C., Zolotaryuk, A. V., Ermakov, V. N., Gaididei, Y. B.: On the existence of resonances in the transmission probability for interactions arising from derivatives of Dirac's delta function.J. Phys. A, Math. Gen. 36 (2003), 7589-7600. Zbl 1047.81567, MR 2006513, 10.1088/0305-4470/36/27/311
Reference: [8] Exner, P., Manko, S. S.: Approximations of quantum-graph vertex couplings by singularly scaled potentials.J. Phys. A, Math. Theor. 46 (2013), Article ID 345202, 17 pages. Zbl 1278.81095, MR 3101681, 10.1088/1751-8113/46/34/345202
Reference: [9] Golovaty, Yu.: 1D Schrödinger operators with short range interactions: two-scale regularization of distributional potentials.Integral Equations Oper. Theory 75 (2013), 341-362. Zbl 1270.34198, MR 3019277, 10.1007/s00020-012-2027-z
Reference: [10] Golovaty, Yu. D., Hryniv, R. O.: Norm resolvent convergence of singularly scaled Schrö-dinger operators and $\delta'$-potentials.Proc. R. Soc. Edinb., Sect. A, Math. 143 (2013), 791-816. MR 3082301
Reference: [11] Golovaty, Yu. D., Man'ko, S. S.: Solvable models for the Schrödinger operators with $\delta'$-like potentials.Ukr. Math. Bulletin 6 (2009), 169-203. MR 2768971
Reference: [12] Jensen, A., Nenciu, G.: A unified approach to resolvent expansions at thresholds.Rev. Math. Phys. 13 (2001), 717-754. Zbl 1029.81067, MR 1841744, 10.1142/S0129055X01000843
Reference: [13] Kurasov, P., Scrinzi, A., Elander, N.: $\delta'$ potential arising in exterior complex scaling.Phys. Rev. A 49 (1994), 5095-5097. 10.1103/PhysRevA.49.5095
Reference: [14] Man'ko, S. S.: On $\delta'$-like potential scattering on star graphs.J. Phys. A, Math. Theor. 43 (2010), Article ID 445304, 14 pages. Zbl 1202.81201, MR 2733833, 10.1088/1751-8113/43/44/445304
Reference: [15] Man'ko, S. S.: Schrödinger operators on star graphs with singularly scaled potentials supported near the vertices.J. Math. Phys. 53 (2012), Article ID 123521, 13 pages. Zbl 1278.81097, MR 3405911, 10.1063/1.4769425
Reference: [16] Šeba, P.: Some remarks on the $\delta'$-interaction in one dimension.Rep. Math. Phys. 24 (1986), 111-120. Zbl 0638.70016, MR 0932938, 10.1016/0034-4877(86)90045-5
.

Files

Files Size Format View
MathBohem_139-2014-2_12.pdf 258.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo