Previous |  Up |  Next

Article

Title: A note on the Cahn-Hilliard equation in $H^1(\mathbb R^N)$ involving critical exponent (English)
Author: Cholewa, Jan W.
Author: Rodriguez-Bernal, Anibal
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 2
Year: 2014
Pages: 269-283
Summary lang: English
.
Category: math
.
Summary: We consider the Cahn-Hilliard equation in $H^1(\mathbb R^N)$ with two types of critically growing nonlinearities: nonlinearities satisfying a certain limit condition as $|u|\to \infty $ and logistic type nonlinearities. In both situations we prove the $H^2(\mathbb R^N)$-bound on the solutions and show that the individual solutions are suitably attracted by the set of equilibria. This complements the results in the literature; see J. W. Cholewa, A. Rodriguez-Bernal (2012). (English)
Keyword: initial value problem for higher order parabolic equations
Keyword: asymptotic behavior of solutions
Keyword: critical exponent
MSC: 35B33
MSC: 35B40
MSC: 35K30
MSC: 35K59
idZBL: Zbl 06362258
idMR: MR3238839
DOI: 10.21136/MB.2014.143854
.
Date available: 2014-07-14T08:27:43Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143854
.
Reference: [1] Arrieta, J. M., Carvalho, A. N., Rodríguez-Bernal, A.: Parabolic problems with nonlinear boundary conditions and critical nonlinearities.J. Differ. Equations 156 (1999), 376-406. Zbl 0938.35077, MR 1705387, 10.1006/jdeq.1998.3612
Reference: [2] Arrieta, J. M., Cholewa, J. W., Dlotko, T., Rodríguez-Bernal, A.: Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 56 (2004), 515-554. Zbl 1058.35102, MR 2035325, 10.1016/j.na.2003.09.023
Reference: [3] Arrieta, J. M., Rodriguez-Bernal, A., Cholewa, J. W., Dlotko, T.: Linear parabolic equations in locally uniform spaces.Math. Models Methods Appl. Sci. 14 (2004), 253-293. Zbl 1058.35076, MR 2040897, 10.1142/S0218202504003234
Reference: [4] Blömker, D., Maier-Paape, S., Wanner, T.: Spinodal decomposition for the Cahn-Hilliard-Cook equation.Commun. Math. Phys. 223 (2001), 553-582. Zbl 0993.60061, MR 1866167, 10.1007/PL00005585
Reference: [5] Blömker, D., Maier-Paape, S., Wanner, T.: Second phase spinodal decomposition for the Cahn-Hilliard-Cook equation.Trans. Am. Math. Soc. 360 (2008), 449-489. Zbl 1130.60066, MR 2342011, 10.1090/S0002-9947-07-04387-5
Reference: [6] Bonfoh, A.: Finite-dimensional attractor for the viscous Cahn-Hilliard equation in an unbounded domain.Q. Appl. Math. 64 (2006), 93-104. Zbl 1115.35025, MR 2211379, 10.1090/S0033-569X-06-00988-3
Reference: [7] Bricmont, J., Kupiainen, A., Taskinen, J.: Stability of Cahn-Hilliard fronts.Commun. Pure Appl. Math. 52 (1999), 839-871. Zbl 0939.35022, MR 1682804, 10.1002/(SICI)1097-0312(199907)52:7<839::AID-CPA4>3.0.CO;2-I
Reference: [8] Caffarelli, L. A., Muler, N. E.: An $L^\infty$ bound for solutions of the Cahn-Hilliard equation.Arch. Ration. Mech. Anal. 133 (1995), 129-144. MR 1367359, 10.1007/BF00376814
Reference: [9] Cahn, J. W., Hilliard, J. E.: Free energy of a nonuniform system. I: Interfacial free energy.J. Chem. Phys. 28 (1958), 258-267. 10.1063/1.1744102
Reference: [10] Carvalho, A. N., Cholewa, J. W.: Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities.J. Math. Anal. Appl. 310 (2005), 557-578. Zbl 1077.35031, MR 2022944, 10.1016/j.jmaa.2005.02.024
Reference: [11] Carvalho, A. N., Dlotko, T.: Dynamics of the viscous Cahn-Hilliard equation.J. Math. Anal. Appl. 344 (2008), 703-725. Zbl 1151.35008, MR 2426301, 10.1016/j.jmaa.2008.03.020
Reference: [12] Cholewa, J. W., Dlotko, T.: Global attractor for the Cahn-Hilliard system.Bull. Aust. Math. Soc. 49 (1994), 277-292. Zbl 0803.35013, MR 1265364, 10.1017/S0004972700016348
Reference: [13] Cholewa, J. W., Dlotko, T.: Global Attractors in Abstract Parabolic Problems.London Mathematical Society Lecture Note Series 278 Cambridge University Press, Cambridge (2000). Zbl 0954.35002, MR 1778284
Reference: [14] Cholewa, J. W., Rodriguez-Bernal, A.: Dissipative mechanism of a semilinear higher order parabolic equation in $\mathbb{R}^N$.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 3510-3530. MR 2901334, 10.1016/j.na.2012.01.011
Reference: [15] Cholewa, J. W., Rodriguez-Bernal, A.: On the Cahn-Hilliard equation in $H^1(\mathbb{R}^N)$.J. Differ. Equations 253 (2012), 3678-3726. MR 2981268, 10.1016/j.jde.2012.08.033
Reference: [16] Cholewa, J. W., Rodriguez-Bernal, A.: Critical and supercritical higher order parabolic problems in $\mathbb{R}^N$.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 104 (2014), 50-74. Zbl 1288.35281, MR 3196888, 10.1016/j.na.2014.03.013
Reference: [17] Dlotko, T., Kania, M. B., Sun, C.: Analysis of the viscous Cahn-Hilliard equation in $\mathbb{R}^N$.J. Differ. Equations 252 (2012), 2771-2791. MR 2860640, 10.1016/j.jde.2011.08.052
Reference: [18] Duan, L., Liu, S., Zhao, H.: A note on the optimal temporal decay estimates of solutions to the Cahn-Hilliard equation.J. Math. Anal. Appl. 372 (2010), 666-678. Zbl 1203.35040, MR 2678892, 10.1016/j.jmaa.2010.06.009
Reference: [19] Elliott, C. M., Stuart, A. M.: Viscous Cahn-Hilliard equation II: Analysis.J. Differ. Equations 128 (1996), 387-414. Zbl 0855.35067, MR 1398327
Reference: [20] Eyre, D. J.: Systems of Cahn-Hilliard Equations.University of Minnesota, AHPCRC Preprint 92-102, 1992. Zbl 0853.73060, MR 1247174
Reference: [21] Grasselli, M., Schimperna, G., Zelik, S.: Trajectory and smooth attractors for Cahn-Hilliard equations with inertial term.Nonlinearity 23 (2010), 707-737. Zbl 1198.35038, MR 2593916, 10.1088/0951-7715/23/3/016
Reference: [22] Hale, J. K.: Asymptotic Behavior of Dissipative Systems.Mathematical Surveys and Monographs 25 American Mathematical Society, Providence (1988). Zbl 0642.58013, MR 0941371
Reference: [23] Henry, D.: Geometric Theory of Semilinear Parabolic Equations.Lecture Notes in Mathematics 840 Springer, Berlin (1981). Zbl 0456.35001, MR 0610244, 10.1007/BFb0089647
Reference: [24] Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems.Arch. Ration. Mech. Anal. 58 (1975), 181-205. Zbl 0343.35056, MR 0390516, 10.1007/BF00280740
Reference: [25] Korvola, T., Kupiainen, A., Taskinen, J.: Anomalous scaling for three-dimensional Cahn-Hilliard fronts.Commun. Pure Appl. Math. 58 (2005), 1077-1115. Zbl 1078.35049, MR 2143527, 10.1002/cpa.20055
Reference: [26] Li, D., Zhong, C.: Global attractor for the Cahn-Hilliard system with fast growing nonlinearity.J. Differ. Equations 149 (1998), 191-210. Zbl 0912.35029, MR 1646238, 10.1006/jdeq.1998.3429
Reference: [27] Liu, S., Wang, F., Zhao, H.: Global existence and asymptotics of solutions of the Cahn-Hilliard equation.J. Differ. Equations 238 (2007), 426-469. Zbl 1120.35044, MR 2341432, 10.1016/j.jde.2007.02.014
Reference: [28] Miranville, A.: Long-time behavior of some models of Cahn-Hilliard equations in deformable continua.Nonlinear Anal., Real World Appl. 2 (2001), 273-304. Zbl 0989.35066, MR 1835609
Reference: [29] Miranville, A.: Asymptotic behavior of the Cahn-Hilliard-Oono equation.J. Appl. Anal. Comput. 1 (2011), 523-536. Zbl 1304.35342, MR 2889956
Reference: [30] Novick-Cohen, A.: On the viscous Cahn-Hilliard equation.Material instabilities in continuum mechanics. Proc. Symp., Heriot-Watt University, Edinburgh, 1985/86 J. M. Ball Oxford Science Publications Clarendon Press, Oxford 329-342 (1988). Zbl 0632.76119, MR 0970531
Reference: [31] Novick-Cohen, A.: The Cahn-Hilliard equation.Handbook of Differential Equations: Evolutionary Equations IV Elsevier/North-Holland, Amsterdam (2008), 201-228. Zbl 1185.35001, MR 2508166
Reference: [32] Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics.Applied Mathematical Sciences 68 Springer, New York (1988). Zbl 0662.35001, MR 0953967, 10.1007/978-1-4684-0313-8
Reference: [33] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators.North-Holland Mathematical Library 18 North-Holland Publishing Company, Amsterdam (1978). Zbl 0387.46033, MR 0503903
Reference: [34] Zelik, S., Pennant, J.: Global well-posedness in uniformly local spaces for the Cahn-Hilliard equations in $\mathbb{R}^3$.Commun. Pure Appl. Anal. 12 (2013), 461-480. MR 2972440
.

Files

Files Size Format View
MathBohem_139-2014-2_13.pdf 293.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo