[8] Bereanu, C., Jebelean, P., Mawhin, J.: 
Variational methods for nonlinear perturbations of singular $\phi$-Laplacians. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 22 (2011), 89-111. 
DOI 10.4171/RLM/589 | 
MR 2799910 
[12] Bereanu, C., Jebelean, P., Şerban, C.: 
Nontrivial solutions for a class of one-parameter problems with singular $\phi$-Laplacian. Ann. Univ. Buchar., Math. Ser. 3(61) (2012), 155-162. 
MR 3034970 | 
Zbl 1274.35078 
[13] Bereanu, C., Jebelean, P., Torres, P. J.: 
Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space. J. Funct. Anal. 264 (2013), 270-287. 
DOI 10.1016/j.jfa.2012.10.010 | 
MR 2995707 
[16] Brézis, H.: 
Positive solutions of nonlinear elliptic equations in the case of critical Sobolev exponent. Nonlinear Partial Differential Equations and Their Applications, Collége de France Seminar, Vol. III, 129-146, Res. Notes Math. 70, Pitman, Boston, 1982. 
MR 0670270 | 
Zbl 0514.35031 
[17] Brézis, H., Mawhin, J.: 
Periodic solutions of the forced relativistic pendulum. Differ. Integral Equ. 23 (2010), 801-810. 
MR 2675583 | 
Zbl 1240.34207 
[19] Coelho, I., Corsato, C., Obersnel, F., Omari, P.: 
Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation. Adv. Nonlinear Stud. 12 (2012), 621-638. 
DOI 10.1515/ans-2012-0310 | 
MR 2976056 | 
Zbl 1263.34028 
[20] Coelho, I., Corsato, C., Rivetti, S.: Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation in a ball. Topol. Methods Nonlinear Anal (to appear).
[21] Corsato, C., Obersnel, F., Omari, P., Rivetti, S.: 
Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space. J. Math. Anal. Appl. 405 (2013), 227-239. 
DOI 10.1016/j.jmaa.2013.04.003 | 
MR 3053503 
[23] Mawhin, J.: 
Semicoercive monotone variational problems. Bull. Cl. Sci., V. Sér., Acad. R. Belg. 73 (1987), 118-130. 
MR 0938142 
[27] Pohožaev, S. I.: 
On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$. Russian Dokl. Akad. Nauk SSSR 165 (1965), 36-39. 
MR 0192184 
[28] Rabinowitz, P. H.: 
On a class of functionals invariant under a $\mathbb Z^n$ action. Trans. Am. Math. Soc. 310 (1988), 303-311. 
MR 0965755 
[30] Willem, M.: 
Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications 24 Birkhäuser, Boston (1996). 
MR 1400007 | 
Zbl 0856.49001