[1] Appelbe, B., Flynn, D., McNamara, H., O'Kane, P., Pimenov, A., Pokrovskii, A., skii, D. Rachin-\allowbreak, Zhezherun, A.: 
Rate-independent hysteresis in terrestrial hydrology. Control Systems Magazine, IEEE 29 (2009), 44-69 DOI 10.1109/MCS.2008.930923. 
DOI 10.1109/MCS.2008.930923 
[2] Appelbe, B., Rachinskii, D., Zhezherun, A.: 
Hopf bifurcation in a van der Pol type oscillator with magnetic hysteresis. Physica B: Condensed Matter 403 (2008), 301-304 DOI 10.1016/j.physb.2007.08.034. 
DOI 10.1016/j.physb.2007.08.034 
[3] Bertotti, G., Mayergoyz, I. D., Serpico, C.: 
Nonlinear magnetization dynamics. Switching and relaxation phenomena. The Science of Hysteresis II. Physical Modeling, Micromagnetics, and Magnetization Dynamics G. Bertotti, I. D. Mayergoyz Elsevier, Amsterdam 435-565 (2006). 
MR 2307930 | 
Zbl 1148.78001 
[4] Bertotti, G., Mayergoyz, I., eds.: 
The Science of Hysteresis. Elsevier, Amsterdam (2006). 
MR 2307931 
[6] Brokate, M., Pokrovskii, A., Rachinskii, D., Rasskazov, O.: 
Differential equations with hysteresis via a canonical example. The Science of Hysteresis I. Mathematical Modeling and Applications G. Bertotti, I. D. Mayergoyz Elsevier, Amsterdam 125-291 (2006). 
MR 2307931 | 
Zbl 1142.34026 
[8] Chiorino, G., Auger, P., Chassé, J.-L., Charles, S.: 
Behavioral choices based on patch selection: a model using aggregation methods. Math. Biosci. 157 (1999), 189-216. 
DOI 10.1016/S0025-5564(98)10082-2 | 
MR 1686474 
[9] Cross, R., McNamara, H., Pokrovskii, A., Rachinskii, D.: 
A new paradigm for modelling hysteresis in macroeconomic flows. Physica B: Condensed Matter 403 (2008), 231-236 DOI 10.1016/j.physb.2007.08.017. 
DOI 10.1016/j.physb.2007.08.017 
[10] Davino, D., Krejčí, P., Visone, C.: 
Fully coupled modeling of magneto-mechanical hysteresis through `thermodynamic' compatibility. Smart Materials and Structures 22 (2013), 14 pages DOI 10.1088/0964-1726/22/9/095009. 
DOI 10.1088/0964-1726/22/9/095009 
[11] Diamond, P., Kuznetsov, N., Rachinskii, D.: 
On the Hopf bifurcation in control systems with a bounded nonlinearity asymptotically homogeneous at infinity. J. Differ. Equations 175 (2001), 1-26. 
DOI 10.1006/jdeq.2000.3916 | 
MR 1849221 | 
Zbl 0984.34029 
[12] Diamond, P., Rachinskii, D., Yumagulov, M.: 
Stability of large cycles in a nonsmooth problem with Hopf bifurcation at infinity. Nonlinear Anal., Theory Methods Appl. 42 (2000), 1017-1031. 
MR 1780452 | 
Zbl 0963.34034 
[13] Eleuteri, M., Kopfová, J., Krejčí, P.: 
Magnetohydrodynamic flow with hysteresis. SIAM J. Math. Anal. 41 (2009), 435-464. 
DOI 10.1137/080718383 | 
MR 2507458 
[16] Hodgkin, A. L., Huxley, A. F.: 
A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117 (1952), 500-544 DOI 10.1007/BF02459568. 
DOI 10.1113/jphysiol.1952.sp004764 
[18] Krasnosel'skij, A., Rachinskij, D. I.: 
On the continua of cycles in systems with hysteresis. Dokl. Math. 63 (2001), 339-344. 
Zbl 1052.34052 
[19] Krasnosel'skij, M. A., Pokrovskij, A. V.: Systems with Hysteresis. Translated from the Russian. Springer, Berlin (1989).
[20] Krejčí, P.: 
Hysteresis, Convexity and Dissipation in Hyperbolic Equations. GAKUTO International Series. Mathematical Sciences and Applications 8 Gakkotosho, Tokyo (1996). 
MR 2466538 
[21] Krejčí, P.: 
On Maxwell equations with the Preisach hysteresis operator: The one-dimensional time-periodic case. Apl. Mat. 34 (1989), 364-374. 
MR 1014077 | 
Zbl 0701.35098 
[23] Krejčí, P., O'Kane, J. P., Pokrovskii, A., Rachinskii, D.: 
Stability results for a soil model with singular hysteretic hydrology. Journal of Physics: Conference Series 268 (2011), 19 pages DOI 10.1088/1742-6596/268/1/012016. 
DOI 10.1088/1742-6596/268/1/012016 
[24] Krejčí, P., O'Kane, J. P., Pokrovskii, A., Rachinskii, D.: 
Properties of solutions to a class of differential models incorporating Preisach hysteresis operator. Physica D. Nonlinear Phenomena 241 (2012), 2010-2028. 
DOI 10.1016/j.physd.2011.05.005 | 
MR 2994340 
[25] Kuhnen, K., Krejčí, P.: 
Compensation of complex hysteresis and creep effects in piezoelectrically actuated systems---a new Preisach modeling approach. IEEE Trans. Automat. Control 54 (2009), 537-550. 
DOI 10.1109/TAC.2009.2012984 | 
MR 2191546 
[28] Mayergoyz, I. D.: 
Mathematical Models of Hysteresis and Their Applications. Elsevier, Amsterdam (2003). 
MR 1083150 
[29] McCarthy, S., Rachinskii, D.: 
Dynamics of systems with Preisach memory near equilibria. Math. Bohem. 139 (2014), 39-73. 
MR 3231429 
[30] Pimenov, A., Kelly, T. C., Korobeinikov, A., O'Callaghan, M. J., Pokrovskii, A. V., Rachinskii, D.: 
Memory effects in population dynamics: spread of infectious disease as a case study. Math. Model. Nat. Phenom. 7 (2012), 204-226. 
DOI 10.1051/mmnp/20127313 | 
MR 2928740 
[33] Visone, C.: 
Hysteresis modelling and compensation for smart sensors and actuators. Journal of Physics: Conference Series 138 (2008), 23 pages DOI 10.1088/1742-6596/138/\allowbreak1/012028. 
DOI 10.1088/1742-6596/138/\allowbreak1/012028