Previous |  Up |  Next

Article

Title: Equivalence of compositional expressions and independence relations in compositional models (English)
Author: Malvestuto, Francesco M.
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 3
Year: 2014
Pages: 322-362
Summary lang: English
.
Category: math
.
Summary: We generalize Jiroušek's (right) composition operator in such a way that it can be applied to distribution functions with values in a “semifield“, and introduce (parenthesized) compositional expressions, which in some sense generalize Jiroušek's “generating sequences” of compositional models. We say that two compositional expressions are equivalent if their evaluations always produce the same results whenever they are defined. Our first result is that a set system $\cal H$ is star-like with centre $X$ if and only if every two compositional expressions with “base scheme” $\cal H$ and “key” $X$ are equivalent. This result is stronger than Jiroušek's result which states that, if $\cal H$ is star-like with centre $X$, then every two generating sequences with base scheme $\cal H$ and key $X$ are equivalent. Then, we focus on canonical expressions, by which we mean compositional expressions $\theta$ such that the sequence of the sets featured in $\theta$ and arranged in order of appearance enjoys the “running intersection property”. Since every compositional expression, whose base scheme is a star-like set system with centre $X$ and whose key is $X$, is a canonical expression, we investigate the equivalence between two canonical expressions with the same base scheme and the same key. We state a graphical characterization of those set systems $\cal H$ such that every two canonical expressions with base scheme $\cal H$ and key $X$ are equivalent, and also provide a graphical algorithm for their recognition. Finally, we discuss the problem of detecting conditional independences that hold in a compositional model. (English)
Keyword: compositional expression
Keyword: compositional model
Keyword: running intersection property
Keyword: perfect sequence
MSC: 05C65
MSC: 05C85
MSC: 60E99
MSC: 62H05
MSC: 62H99
MSC: 65C50
MSC: 68T37
idZBL: Zbl 06357554
idMR: MR3245534
DOI: 10.14736/kyb-2014-3-0322
.
Date available: 2014-07-29T13:07:31Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143879
.
Related article: http://dml.cz/handle/10338.dmlcz/144305
.
Reference: [1] Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database schemes..J. Assoc. Comput. Mach. 30 (1983), 479-513. Zbl 0624.68087, MR 0709830, 10.1145/2402.322389
Reference: [2] Blair, J. R. S., Peyton, B.W.: An Introduction to Chordal Graphs and Clique Trees..Technical Report ORNL/TM-12203, 1992. Zbl 0803.68081, MR 1320296
Reference: [3] Csiszár, I.: $I$-divergence geometry of probability distributions and minimization problems..Ann. Probab. 3 (1975), 146-158. Zbl 0318.60013, MR 0365798, 10.1214/aop/1176996454
Reference: [4] Dawid, A. P.: Applications of a general propagation algorithm for probabilistic expert systems..Statist. Comput. 2 (1992), 25-36. 10.1007/BF01890546
Reference: [5] Deming, W. E., Stephan, F. F.: On least squares adjustment of a sampled frequency table when the expected marginal totals are known..Ann. Math. Stat. 11 (1940), 427-444. MR 0003527, 10.1214/aoms/1177731829
Reference: [6] Hara, H., Takemura, A.: Boundary cliques, clique trees and perfect sequences of maximaal cliques of a chordal graph..arXiv:cs/0607055v1 [cs.DM], 11 July 2006, pp. 1-24. MR 2266415
Reference: [7] Jiroušek, R.: Composition of probability measures on finite spaces..In: Proc. XIII International Conf. on Uncertainty in Artificial Intelligence (D. Geiger and P. P. Shenoy, eds.), Morgan Kaufmann, San Francisco 1997, pp. 274-281.
Reference: [8] Jiroušek, R.: Decomposition of multidimensional distributions represented by perfect sequences..Ann. Math. Artif. Intelligence 5 (2002), 215-226. Zbl 1004.60010, MR 1899952, 10.1023/A:1014591402750
Reference: [9] Jiroušek, R.: Detection of independence relations from persegrams..In: Proc. VI International Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Annecy 2002, Vol. C, pp. 1261-1267.
Reference: [10] Jiroušek, R.: Persegrams of compositional models revisited: conditional independence..In: Proc. XII International Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (L. Magdalena, M. Ojeda-Aciego and J. L. Verdegay, eds.), Malaga 2008, pp. 915-922.
Reference: [11] Jiroušek, R.: Foundations of compositional model theory..Internat. J. General Systems 40 (2011), 623-678. Zbl 1252.68285, MR 2817988, 10.1080/03081079.2011.562627
Reference: [12] Jiroušek, R.: Local computations in Dempster-Shafer theory of evidence..Internat. J. Approx. Reason. 53 (2012), 1155-1167. Zbl 1266.68177, MR 2971864, 10.1016/j.ijar.2012.06.012
Reference: [13] Jiroušek, R., Shenoy, P. P.: Compositional models in valuation-based systems..Internat. J. Approx. Reason. 55 (2014), 277-293. Zbl 1252.68310, MR 3133554, 10.1016/j.ijar.2013.02.002
Reference: [14] Jiroušek, R., Vejnarová, J.: General framework for multidimensional models..Internat. J. Approx. Reas. 18 (2003), 107-127. Zbl 1029.68131
Reference: [15] Jiroušek, R., Vejnarová., J., Daniels, M.: Composition models of belief functions..In: Proc. V Symp. on Imprecise Probabilities and Their Applications (G. De Cooman, J. Vejnarová, and M. Zaffalon, eds.), Action M Agency, Prague 2007, pp. 243-252.
Reference: [16] Kratochvíl, V.: Characteristic properties of equivalent structures in compositional models..Internat. J. Approx. Reason. 52 (2011), 599-612. Zbl 1214.68400, MR 2787020, 10.1016/j.ijar.2010.12.005
Reference: [17] Kratochvíl, V.: Probabilistic compositional models: solution of an equivalence problem..Internat. J. Approx. Reason. 54 (2013), 590-601. MR 3041095, 10.1016/j.ijar.2013.01.002
Reference: [18] Lauritzen, S. L.: Graphical Models..Oxford University Press, Oxford 1996. MR 1419991
Reference: [19] Lenz, H.-J., Talheim, B.: A formal framework of aggregation for the OLAP-OLTP model..J. of Universal Computer Science 15 (2009), 273-303. MR 2497221
Reference: [20] Malvestuto, F. M.: Tree and local computations in a cross-entropy minimization problem with marginal constraints..Kybernetika 46 (2010), 621-654. Zbl 1204.93113, MR 2722092
Reference: [21] Malvestuto, F. M.: The sum-product algorithm: algebraic independence and computational aspects..Kybernetika 49 (2013), 4-22. MR 3088472
Reference: [22] Malvestuto, F. M.: A join-like operator to combine data cubes, and answer queries from multiple data cubes..Unpublished manuscript, 2013.
Reference: [23] Malvestuto, F. M., Pourabbas, E.: Local computation of answers to table queries on summary databases..In: Proc. XVII International Conference on Scientific and Statistical Database Management, Santa Barbara 2005, pp. 263-270.
Reference: [24] Mosteller, F.: On pooling data..J. Amer. Statist. Assoc. 43 (1948), 231-242. 10.1080/01621459.1948.10483259
Reference: [25] Pearl, J.: Probabilistic Reasoning in Intelligent Systems..Morgan Kaufmann Pub., San Mateo 1988. Zbl 0746.68089, MR 0965765
Reference: [26] Pourabbas, E., Shoshani, A.: Efficient estimation of joint queries from multiple OLAP databases..ACM Trans. Database Systems 32 (2007), 1, Article No. 2. 10.1145/1206049.1206051
Reference: [27] Pourabbas, E., Shoshani, A.: Improving estimation accuracy of aggregate queries on data cubes..Data and Knowledge Engrg. 69 (2010), 50-72. 10.1016/j.datak.2009.08.010
Reference: [28] Shenoy, P. P., Shafer, G.: Axioms for probability and belief-function propagation..In: Uncertainty in Artificial Intelligence (R. D. Shachter, T. Levitt, J. F. Lemmer, and L. N. Kanel, eds.), North-Holland 1990, Vol. 4. MR 1166831
Reference: [29] Tarjan, R. E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs..SIAM J. Comput. 13 (1984), 566-579. Zbl 0562.68055, MR 0749707, 10.1137/0213035
Reference: [30] Verma, V., Gagliardi, F., Ferretti, C.: On Pooling Data and Measures..Working Paper No. 84 University of Siena, 2009.
Reference: [31] Vomlel, J.: Integrating inconsistent data in a probabilistic model..J. Appl. Non-Classical Logics 49 (2003), 4-22. Zbl 1185.68699
.

Files

Files Size Format View
Kybernetika_50-2014-3_3.pdf 497.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo