Previous |  Up |  Next

Article

Title: Variations on undirected graphical models and their relationships (English)
Author: Heckerman, David
Author: Meek, Christopher
Author: Richardson, Thomas
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 3
Year: 2014
Pages: 363-377
Summary lang: English
.
Category: math
.
Summary: We compare alternative definitions of undirected graphical models for discrete, finite variables. Lauritzen [7] provides several definitions of such models and describes their relationships. He shows that the definitions agree only when joint distributions represented by the models are limited to strictly positive distributions. Heckerman et al. [6], in their paper on dependency networks, describe another definition of undirected graphical models for strictly positive distributions. They show that this definition agrees with those of Lauritzen [7] again when distributions are strictly positive. In this paper, we extend the definition of Heckerman et al. [6] to arbitrary distributions and show how this definition relates to those of Lauritzen [7] in the general case. (English)
Keyword: graphical model
Keyword: undirected graph
Keyword: Markov properties
Keyword: Gibbs sampler
Keyword: conditionally specified distributions
Keyword: dependency network
MSC: 60E05
MSC: 62H99
MSC: 68T30
MSC: 68T37
idZBL: Zbl 1302.60031
idMR: MR3245535
DOI: 10.14736/kyb-2014-3-0363
.
Date available: 2014-07-29T13:08:44Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143880
.
Reference: [1] Agresti, A.: Categorical Data Analysis..Wiley and Sons, New York 1990. Zbl 1281.62022, MR 1044993
Reference: [2] Arnold, B. C., Castillo, E., Sarabia, J.: Conditional Specification of Statistical Models..Springer-Verlag, New York 1999. Zbl 0932.62001, MR 1716531
Reference: [3] Bartlett, M. S.: An Introduction to Stochastic Processes..University Press, Cambridge 1955. Zbl 0442.60001, MR 0650244
Reference: [4] Besag, J.: Spatial interaction and the statistical analysis of lattice systems..J. Roy. Statist. Soc. Ser. B 36 (1974), 192-236. Zbl 0327.60067, MR 0373208
Reference: [5] Brook, D.: On the distinction between the conditional probability and the joint probability approaches in the specification of nearest-neighbor systems..Biometrika 51 (1964), 481-483. MR 0205315, 10.1093/biomet/51.3-4.481
Reference: [6] Heckerman, D., Chickering, D. M., Meek, C., Rounthwaite, R., Kadie, C.: Dependency networks for inference, collaborative filtering, and data visualization..J. Mach. Learn. Res. 1 (2000), 49-75. Zbl 1008.68132
Reference: [7] Lauritzen, S. L.: Graphical Models..Clarendon Press, Oxford 1996. MR 1419991
Reference: [8] Lévy, P.: Chaînes doubles de Markoff et fonctions aléatoires de deux variables..C. R. Académie des Sciences, Paris 226 (1948), 53-55. Zbl 0030.16601, MR 0023477
Reference: [9] Moussouris, J.: Gibbs and Markov random systems with constraints..J. Statist. Phys. 10 (1974), 11-33. MR 0432132, 10.1007/BF01011714
Reference: [10] Matúš, F., Studený, M.: Conditional independence among four random variables I..Combin. Probab. Comput. 4 (1995), 269-78. MR 1356579, 10.1017/S0963548300001644
Reference: [11] Norris, J. R.: Markov Chains..Cambridge University Press, Cambridge 1997. Zbl 1274.60244, MR 1600720
Reference: [12] Yang, E., Ravikumar, P., Allen, G. I., Liu, Z.: Graphical Models via Generalized Linear Models..In: Advances in Neural Information Processing Systems 25 (2013), Cambridge.
.

Files

Files Size Format View
Kybernetika_50-2014-3_4.pdf 375.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo