Previous |  Up |  Next


graphical model; undirected graph; Markov properties; Gibbs sampler; conditionally specified distributions; dependency network
We compare alternative definitions of undirected graphical models for discrete, finite variables. Lauritzen [7] provides several definitions of such models and describes their relationships. He shows that the definitions agree only when joint distributions represented by the models are limited to strictly positive distributions. Heckerman et al. [6], in their paper on dependency networks, describe another definition of undirected graphical models for strictly positive distributions. They show that this definition agrees with those of Lauritzen [7] again when distributions are strictly positive. In this paper, we extend the definition of Heckerman et al. [6] to arbitrary distributions and show how this definition relates to those of Lauritzen [7] in the general case.
[1] Agresti, A.: Categorical Data Analysis. Wiley and Sons, New York 1990. MR 1044993 | Zbl 1281.62022
[2] Arnold, B. C., Castillo, E., Sarabia, J.: Conditional Specification of Statistical Models. Springer-Verlag, New York 1999. MR 1716531 | Zbl 0932.62001
[3] Bartlett, M. S.: An Introduction to Stochastic Processes. University Press, Cambridge 1955. MR 0650244 | Zbl 0442.60001
[4] Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. Roy. Statist. Soc. Ser. B 36 (1974), 192-236. MR 0373208 | Zbl 0327.60067
[5] Brook, D.: On the distinction between the conditional probability and the joint probability approaches in the specification of nearest-neighbor systems. Biometrika 51 (1964), 481-483. DOI 10.1093/biomet/51.3-4.481 | MR 0205315
[6] Heckerman, D., Chickering, D. M., Meek, C., Rounthwaite, R., Kadie, C.: Dependency networks for inference, collaborative filtering, and data visualization. J. Mach. Learn. Res. 1 (2000), 49-75. Zbl 1008.68132
[7] Lauritzen, S. L.: Graphical Models. Clarendon Press, Oxford 1996. MR 1419991
[8] Lévy, P.: Chaînes doubles de Markoff et fonctions aléatoires de deux variables. C. R. Académie des Sciences, Paris 226 (1948), 53-55. MR 0023477 | Zbl 0030.16601
[9] Moussouris, J.: Gibbs and Markov random systems with constraints. J. Statist. Phys. 10 (1974), 11-33. DOI 10.1007/BF01011714 | MR 0432132
[10] Matúš, F., Studený, M.: Conditional independence among four random variables I. Combin. Probab. Comput. 4 (1995), 269-78. DOI 10.1017/S0963548300001644 | MR 1356579
[11] Norris, J. R.: Markov Chains. Cambridge University Press, Cambridge 1997. MR 1600720 | Zbl 1274.60244
[12] Yang, E., Ravikumar, P., Allen, G. I., Liu, Z.: Graphical Models via Generalized Linear Models. In: Advances in Neural Information Processing Systems 25 (2013), Cambridge.
Partner of
EuDML logo