Previous |  Up |  Next

Article

Title: Lower bounds for simultaneous Diophantine approximation constants (English)
Author: Nowak, Werner Georg
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 22
Issue: 1
Year: 2014
Pages: 71-76
Summary lang: English
.
Category: math
.
Summary: After a brief exposition of the state-of-art of research on the (Euclidean) simultaneous Diophantine approximation constants $\theta _s$, new lower bounds are deduced for $\theta _6$ and $\theta _7$. (English)
Keyword: geometry of numbers
Keyword: Diophantine approximation
Keyword: approximation constants
Keyword: critical determinant
MSC: 11H16
MSC: 11J13
idZBL: Zbl 06359724
idMR: MR3233728
.
Date available: 2014-08-27T09:02:11Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/143907
.
Reference: [1] Armitage, J.V.: On a method of Mordell in the geometry of numbers.Mathematika, 2, 1955, 132-140, Zbl 0066.03602, MR 0077574, 10.1112/S0025579300000772
Reference: [2] Blichfeldt, H.: A new principle in the geometry of numbers, with some applications.Trans. Amer. Math. Soc., 15, 1914, 227-235, MR 1500976, 10.1090/S0002-9947-1914-1500976-6
Reference: [3] Davenport, H.: On the product of three homogeneous linear forms.J. London Math. Soc., 13, 1938, 139-145, Zbl 0019.19603, MR 1574142, 10.1112/jlms/s1-13.2.139
Reference: [4] Davenport, H.: On the minimum of a ternary cubic form.J. London Math. Soc., 19, 1944, 13-18, Zbl 0060.11911, MR 0010706, 10.1112/jlms/19.73_Part_1.13
Reference: [5] Davenport, H.: On a theorem of Furtwängler.J. London Math. Soc., 30, 1955, 185-195, Zbl 0064.04501, MR 0067943
Reference: [6] Davenport, H., Mahler, K.: Simultaneous Diophantine approximation.Duke Math. J., 13, 1946, 105-111, Zbl 0060.12000, MR 0016068, 10.1215/S0012-7094-46-01311-7
Reference: [7] Gruber, P.M., Lekkerkerker, C.G.: Geometry of numbers.1987, North Holland, Amsterdam, Zbl 0611.10017, MR 0893813
Reference: [8] Mordell, L.J.: The product of three homogeneous linear ternary forms.J. London Math. Soc., 17, 1942, 107-115, Zbl 0028.11205, MR 0007404, 10.1112/jlms/s1-17.2.107
Reference: [9] Mordell, L.J.: Observation on the minimum of a positive quadratic form in eight variables.J. London Math. Soc., 19, 1944, 3-6, Zbl 0060.12009, MR 0010708, 10.1112/jlms/19.73_Part_1.3
Reference: [10] Mordell, L.J.: On the minimum of a ternary cubic form.J. London Math. Soc., 19, 1944, 6-12, Zbl 0060.11910, MR 0010707, 10.1112/jlms/19.73_Part_1.6
Reference: [11] Niven, I., Zuckerman, H.S.: Einführung in die Zahlentheorie.1975, Bibliograph. Inst., Mannheim,
Reference: [12] Nowak, W.G.: On simultaneous Diophantine approximation.Rend. Circ. Mat. Palermo, Ser. II, 33, 1984, 456-460, Zbl 0535.10036, MR 0779948
Reference: [13] Nowak, W.G.: The critical determinant of the double paraboloid and Diophantine approximation in ${\fam 5 R}^3$ and ${\fam 5 R}^4$.Math. Pannonica, 10, 1999, 111-122, MR 1678107
Reference: [14] Nowak, W.G.: Diophantine approximation in ${\fam 5 R}^s$: On a method of Mordell and Armitage.Algebraic number theory and Diophantine analysis. Proceedings of the conference held in Graz, Austria, August 30 to September 5, 1998, 2000, 339-349, W. de Gruyter, Berlin, MR 1770472
Reference: [15] Prasad, A.V.: Simultaneous Diophantine approximation.Proc. Indian Acad. Sci. A, 31, 1950, 1-15, Zbl 0036.30801, MR 0036270
Reference: [16] Spohn, W.G.: Blichfeldt's theorem and simultaneous Diophantine approximation.Amer. J. Math., 90, 1968, 885-894, MR 0231794, 10.2307/2373489
Reference: [17] Žilinskas, G.: On the product of four homogeneous linear forms.J. London Math. Soc., 16, 1941, 27-37, Zbl 0028.34901, MR 0005531, 10.1112/jlms/s1-16.1.27
.

Files

Files Size Format View
ActaOstrav_22-2014-1_6.pdf 438.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo